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Abstract

We present Deep Global Registration, a differentiable
framework for pairwise registration of real-world 3D scans.
Deep global registration is based on three modules: a
6-dimensional convolutional network for correspondence
confidence prediction, a differentiable Weighted Procrustes
algorithm for closed-form pose estimation, and a robust
gradient-based SE(3) optimizer for pose refinement. Exper-
iments demonstrate that our approach outperforms state-
of-the-art methods, both learning-based and classical, on
real-world data.

1. Introduction
A variety of applications, including 3D reconstruction,

tracking, pose estimation, and object detection, invoke 3D
registration as part of their operation [35, 5, 33]. To maxi-
mize the accuracy and speed of 3D registration, researchers
have developed geometric feature descriptors [22, 11, 41,
9], pose optimization algorithms [38, 45, 24, 50], and end-
to-end feature learning and registration pipelines [41, 2].

In particular, recent end-to-end registration networks
have proven to be effective in relation to classical pipelines.
However, these end-to-end approaches have some draw-
backs that limit their accuracy and applicability. For exam-
ple, PointNetLK [2] uses globally pooled features to encode
the entire geometry of a point cloud, which decreases spa-
tial acuity and registration accuracy. Deep closest point [41]
makes strong assumptions on the distribution of points and
correspondences, which do not hold for partially overlap-
ping 3D scans.

In this work, we propose three modules for robust
and accurate registration that resolve these drawbacks: a
6-dimensional convolutional network for correspondence
confidence estimation, a differentiable Weighted Procrustes
method for scalable registration, and a robust SE(3) opti-
mizer for fine-tuning the final alignment.

The first component is a 6-dimensional convolutional
network that analyzes the geometry of 3D correspondences
and estimates their accuracy. Our approach is inspired
∗indicates equal contribution
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Figure 1: Pairwise registration results on the 3DMatch
dataset [47]. Our method successfully aligns a challeng-
ing 3D pair (left), while RANSAC [35], FGR [50], and
DCP [41] fail. On an easier pair (right), our method
achieves finer alignment.

by a number of learning-based methods for estimating the
validity of correspondences in 2D [46, 34] and 3D [31].
These methods stack coordinates of correspondence pairs,
forming a vector [x;y] ∈ R2×D for each correspondence
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x,y ∈ RD. Prior methods treat these 2 × D-dimensional
vectors as a set, and apply global set processing models
for analysis. Such models largely disregard local geometric
structure. Yet the correspondences are embedded in a met-
ric space (R2×D) that induces distances and neighborhood
relationships. In particular, 3D correspondences form a ge-
ometric structure in 6-dimensional space [8] and we use a
high-dimensional convolutional network to analyze the 6D
structure formed by correspondences and estimate the like-
lihood that a given correspondence is correct (i.e., an inlier).

The second component we develop is a differentiable
Weighted Procrustes solver. The Procrustes method [15]
provides a closed-form solution for rigid registration in
SE(3). A differentiable version of the Procrustes method
by Wang et al. [41] has been used for end-to-end registra-
tion. However, the differentiable Procrustes method passes
gradients through coordinates, which requires O(N2) time
and memory for N keypoints, limiting the number of key-
points that can be processed by the network. We use the
inlier probabilities predicted by our first module (the 6D
convolutional network) to guide the Procrustes method, thus
forming a differentiable Weighted Procrustes method. This
method passes gradients through the weights associated
with correspondences rather than correspondence coordi-
nates. The computational complexity of the Weighted Pro-
crustes method is linear in the number of correspondences,
allowing the registration pipeline to use dense correspon-
dence sets rather than sparse keypoints. This substantially
increases registration accuracy.

Our third component is a robust optimization module
that fine-tunes the alignment produced by the Weighted
Procrustes solver. This optimization module minimizes
a differentiable loss via gradient descent on the continu-
ous SE(3) representation space [52]. The optimization is
fast since it does not require neighbor search in the inner
loop [48].

Experimentally, we validate the presented modules
on a real-world pairwise registration benchmark [47]
and large-scale scene reconstruction datasets [18, 6,
32]. We show that our modules are robust, accu-
rate, and fast in comparison to both classical global
registration algorithms [50, 35, 45] and recent end-to-
end approaches [31, 41, 2]. All training and exper-
iment scripts are available at https://github.com/

chrischoy/DeepGlobalRegistration.

2. Related Work
We divide the related work into three categories follow-

ing the stages of standard registration pipelines that deal
with real-world 3D scans: feature-based correspondence
matching, outlier filtering, and pose optimization.
Feature-based correspondence matching. The first step
in many 3D registration pipelines is feature extraction. Lo-

cal and global geometric structure in 3D is analyzed to pro-
duce high-dimensional feature descriptors, which can then
be used to establish correspondences.

Traditional hand-crafted features commonly summarize
pairwise or higher-order relationships in histograms [20, 37,
40, 36, 35]. Recent work has shifted to learning features via
deep networks [47, 22]. A number of recent methods are
based on global pooling models [12, 11, 49], while others
use convolutional networks [14, 9].

Our work is agnostic to the feature extraction mecha-
nism. Our modules primarily address subsequent stages of
the registration pipeline and are compatible with a wide va-
riety of feature descriptors.

Outlier filtering. Correspondences produced by match-
ing features are commonly heavily contaminated by out-
liers. These outliers need to be filtered out for robust
alignment. A widely used family of techniques for ro-
bust model fitting is based on RANdom SAmple Consen-
sus (RANSAC) [38, 1, 35, 29, 19], which iteratively sam-
ples small sets of correspondences in the hope of sampling
a subset that is free from outliers. Other algorithms are
based on branch-and-bound [45], semi-definite program-
ming [28, 25], and maximal clique selection [44]. These
methods are accurate, but commonly require longer itera-
tive sampling or more expensive computation as the signal-
to-noise ratio decreases. One exception is TEASER [44],
which remains effective even with high outlier rates. Other
methods use robust loss functions to reject outliers during
optimization [50, 4].

Our work uses a convolutional network to identify inliers
and outliers. The network needs only one feed-forward pass
at test time and does not require iterative optimization.

Pose optimization. Pose optimization is the final stage
that minimizes an alignment objective on filtered correspon-
dences. Iterative Closest Points (ICP) [3] and Fast Global
Registration (FGR) [50] use second-order optimization to
optimize poses. Makadia et al. [26] propose an iterative
procedure to minimize correlation scores. Maken et al. [27]
propose to accelerate this process by stochastic gradient de-
scent.

Recent end-to-end frameworks combine feature learn-
ing and pose optimization. Aoki et al. [2] combine Point-
Net global features with an iterative pose optimization
method [24]. Wang et al. [41, 42] train graph neural net-
work features by backpropagating through pose optimiza-
tion.

We further advance this line of work. In particular, our
Weighted Procrustes method reduces the complexity of op-
timization from quadratic to linear and enables the use of
dense correspondences for highly accurate registration of
real-world scans.

https://github.com/chrischoy/DeepGlobalRegistration
https://github.com/chrischoy/DeepGlobalRegistration


3. Deep Global Registration

3D reconstruction systems typically take a sequence of
partial 3D scans as input and recover a complete 3D model
of the scene. These partial scans are scene fragments, as
shown in Fig. 1. In order to reconstruct the scene, re-
construction systems often begin by aligning pairs of frag-
ments [6]. This stage is known as pairwise registration. The
accuracy and robustness of pairwise registration are critical
and often determine the accuracy of the final reconstruction.

Our pairwise registration pipeline begins by extracting
pointwise features. These are matched to form a set of pu-
tative correspondences. We then use a high-dimensional
convolutional network (ConvNet) to estimate the veracity of
each correspondence. Lastly, we use a Weighted Procrustes
method to align 3D scans given correspondences with asso-
ciated likelihood weights, and refine the result by optimiz-
ing a robust objective.

The following notation will be used throughout the pa-
per. We consider two point clouds, X = [x1, ...,xNx

] ∈
R3×Nx and Y = [y1, ...,yNy

] ∈ R3×Ny , with Nx and Ny
points respectively, where xi,yj ∈ R3. A correspondence
between xi and yj is denoted as xi ↔ yj or (i, j).

3.1. Feature Extraction

To prepare for registration, we extract pointwise features
that summarize geometric context in the form of vectors in
metric feature space. Our pipeline is compatible with many
feature descriptors. We use Fully Convolutional Geometric
Features (FCGF) [9], which have recently been shown to
be both discriminative and fast. FCGF are also compact,
with dimensionality as low as 16 to 32, which supports rapid
neighbor search in feature space.

3.2. Correspondence Confidence Prediction

Given the features Fx = {fx1
, ..., fxNx

} and Fy =
{fy1

, ..., fyNx
} of two 3D scans, we use the nearest neigh-

bor in the feature space to generate a set of putative corre-
spondences or matchesM = {(i, argminj ‖fxi − fyj‖)|i ∈
[1, ..., Nx]}. This procedure is deterministic and can be
hand-crafted to filter out noisy correspondences with ratio
or reciprocity tests [50]. However, we propose to learn this
heuristic filtering process through a convolutional network
that learns to analyze the underlying geometric structure of
the correspondence set.

We first provide a 1-dimensional analogy to explain
the geometry of correspondences. Let A be a set of
1-dimensional points A = {0, 1, 2, 3, 4} and B be an-
other such set B = {10, 11, 12, 13, 14}. Here B is
a translation of A: B = {ai + 10|ai ∈ A}. If an
algorithm returns a set of possible correspondences
{(0, 10), (1, 11), (2, 12), (3, 13), (4, 14), (0, 14), (4, 10)},
then the set of correct correspondences (inliers) will form a

Figure 2: 6-dimensional convolutional network architecture
for inlier likelihood prediction (Sec. 3.2). The network has
a U-net structure with residual blocks between strided con-
volutions. Best viewed on the screen.

line (first 5 pairs), whereas incorrect correspondences (out-
liers) will form random noise outside the line (last 2 pairs).
If we extend this to 3D scans and pointclouds, we can
also represent a 3D correspondence xi ↔ yj as a point in
6-dimensional space [xTi ,y

T
j ]T ∈ R6. The inlier correspon-

dences will be distributed on a lower-dimensional surface in
this 6D space, determined by the geometry of the 3D input.
We denote P = {(i, j)| ‖T ∗(xi) − yj‖ < τ, (i, j) ∈ M}
as a set of inliers or a set of correspondences (i, j) that align
accurately up to the threshold τ under the ground truth
transformation T ∗. Meanwhile, the outliers N = PC ∩M
will be scattered outside the surface P . To identify the
inliers, we use a convolutional network. Such networks
have been proven effective in related dense prediction
tasks, such as 3D point cloud segmentation [16, 7]. The
convolutional network in our setting is in 6-dimensional
space [8]. The network predicts a likelihood for each
correspondence, which is a point in 6D space [xTi ,y

T
j ]T .

The prediction is interpreted as the likelihood that the
correspondence is true: an inlier.

Note that the convolution operator is translation invari-
ant, thus our 6D ConvNet will generate the same output re-
gardless of the absolute position of inputs in 3D. We use a
similar network architecture to Choy et al. [9] to create a
6D convolutional network with skip connections within the
spatial resolution across the network. The architecture of
the 6D ConvNet is shown in Fig. 2. During training, we use
the binary cross-entropy loss between the likelihood predic-
tion that a correspondence (i, j) is an inlier, p(i,j) ∈ [0, 1],
and the ground-truth correspondences P to optimize the
network parameters:

Lbce(M, T ∗) =
1

|M|

( ∑
(i,j)∈P

log p(i,j) +
∑

(i,j)∈N

log pC(i,j)

)
,

(1)
where pC = 1 − p and |M| is the cardinality of the set of
putative correspondences.

3.3. Weighted Procrustes for SE(3)

The inlier likelihood estimated by the 6D ConvNet pro-
vides a weight for each correspondence. The original



Procrustes method [15] minimizes the mean squared er-
ror between corresponding points 1

N

∑
(i,j)∈M ‖xi − yj‖2

and thus gives equal weight to all correspondences. In
contrast, we minimize a weighted mean squared error∑

(i,j)∈M w(i,j)‖xi − yj‖2. This change allows us to pass
gradients through the weights, rather than through the po-
sition [41], and enables the optimization to scale to dense
correspondence sets.

Formally, Weighted Procrustes analysis minimizes:

e2 = e2(R, t;w, X, Y ) (2)

=
∑

(i,j)∈M

w̃(i,j)(yj − (Rxi + t))2 (3)

= Tr
(

(Y −RX − t1T )W (Y −RX − t1T )T
)
, (4)

where 1 = (1, ..., 1)T , X = [x1, ...,x|M|], and Y =
[yJ1 , ...,yJ|M| ]. J is a list of indices that defines the corre-
spondences xi ↔ yJi . w = [w1, · · · , w|M|] is the weight
vector and w̃ = [w̃1, · · · , w̃|M|] , φ(w)

||φ(w)||1 denotes the
normalized weight after a nonlinear transformation φ that
applies heuristic prefiltering. W = diag(w̃) forms the di-
agonal weight matrix.

Theorem 1 : The R and t that minimize the squared er-
ror e2(R, t) =

∑
(i,j) w(i,j)(yj − Rxi − t)2 are t̂ = (Y −

RX)W1 and R̂ = USV T where UΣV T = SVD(Σxy),

Σxy = Y KWKXT , K = I −
√
w̃
√
w̃
T

, and S =
diag (1, · · · , 1, det(U)det(V )).

Sketch of proof. First, we differentiate e2 w.r.t. t and
equate the partial derivative to 0. This gives us t̂ =
(Y − RX)W1. Next, we substitute X = KX +

X
√
w̃
√
w̃
T

on Eq. 4 and do the same for Y . Then, we
substitute t = t̂ into the squares. This yields e2 =
Tr
(
(Y −RX)KWKT (Y −RX)T

)
and expanding the

term results in two squares plus −2Tr(Y KWKTXTRT ).
We maximize the last negative term whose maximum is
the sum of all singular values, which leads to R̂. The full
derivation is in the supplement. �

We can easily extend the above theorem to incorporate a
scaling factor c ∈ R+, or anisotropic scaling for tasks such
as scan-to-CAD registration, but in this paper we assume
that partial scans of the same scene have the same scale.

The Weighted Procrustes method generates rotation R̂
and translation t̂ as outputs that depend on the weight vector
w. In our current implementation, R̂ and t̂ are directly sent
to the robust registration module in Section 4 as an initial
pose. However, we briefly demonstrate that they can also
be embedded in an end-to-end registration pipeline, since
Weighted Procrustes is differentiable. From a top-level loss
function L of R̂ and t̂, we can pass the gradient through the

closed-form solver, and update parameters in downstream
modules:

∂

∂w
L(R̂, t̂) =

∂L(R̂, t̂)

∂R̂

∂R̂

∂ŵ
+
∂L(R̂, t̂)

∂t̂

∂t̂(R̂, ŵ)

∂ŵ
, (5)

where L(R̂, t̂) can be defined as the combination of differ-
entiable rotation error (RE) and translation error (TE) be-
tween predictions R̂, t̂ and ground-truth R∗, t∗:

Lrot(R̂) = arccos
Tr(R̂TR∗)− 1

2
, (6)

Ltrans(t̂) =||t̂− t∗||22, (7)

or the Forbenius norm of relative transformation matrices
defined in [2, 41]. The final loss is the weighted sum of
Lrot, Ltrans, and Lbce.

4. Robust Registration
In this section, we propose a fine-tuning module that

minimizes a robust loss function of choice to improve the
registration accuracy. We use a gradient-based method to
refine poses, where a continuous representation [52] for ro-
tations is adopted to remove discontinuities and construct a
smooth optimization space. This module initializes the pose
from the prediction of the Weighted Procrustes method.
During iterative optimization, unlike Maken et al. [27], who
find the nearest neighbor per point at each gradient step, we
rely on the correspondence likelihoods from the 6D Con-
vNet, which is estimated only once per initialization.

In addition, our framework naturally offers a failure de-
tection mechanism. In practice, Weighted Procrustes may
generate numerically unstable solutions when the number
of valid correspondences is insufficient due to small over-
laps or noisy correspondences between input scans. By
computing the ratio of the sum of the filtered weights to
the total number of correspondences, i.e.

∑
i φ(wi)/|M|,

we can easily approximate the fraction of valid corre-
spondences and predict whether an alignment may be un-
stable. When this fraction is low, we resort to a more
time-consuming but accurate registration algorithm such as
RANSAC [38, 1, 35] or a branch-and-bound method [45] to
find a numerically stable solution. In other words, we can
detect when our system might fail before it returns a result
and fall back to a more accurate but time-consuming algo-
rithm, unlike previous end-to-end methods that use globally
pooled latent features [2] or a singly stochastic matrix [41]
– such latent representations are more difficult to interpret.

4.1. SE(3) Representation and Initialization

We use the 6D representation of 3D rotation proposed
by Zhou et al. [52], rather than Euler angles or quaternions.
The new representation uses 6 parameters a1,a2 ∈ R3 and



can be transformed into a 3× 3 orthogonal matrix by

f

 | |
a1 a2
| |

 =

 | | |
b1 b2 b3

| | |

 , (8)

where b1,b2,b3 ∈ R3 are b1 = N(a1), b2 = N(a2 −
(b1 · a2)b1), and b3 = b1 × b2, and N(·) denotes L2
normalization. Thus, the final representation that we use is
a1,a2, t which are equivalent to R, t using Eq. 8.

To initialize a1,a2, we simply use the first two columns
of the rotation matrix R, i.e., b1, b2. For convenience, we
define f−1 as f−1(f(R)) = R though this inverse function
is not unique as there are infinitely many choices of a1,a2
that map to the same R.

4.2. Energy Minimization

We use a robust loss function to fine-tune the registra-
tion between predicted inlier correspondences. The general
form of the energy function is

E(R, t) =

n∑
i=1

φ(w(i,Ji))L(yJi , Rxi + t), (9)

where w̃i and Ji are defined as in Eq. 3 and φ(·) is a pre-
filtering function. In the experiments, we use φ(w) =
I[w > τ ]w, which clips weights below τ elementwise as
neural network outputs bounded logit scores. L(x,y) is a
pointwise loss function between x and y; we use the Hu-
ber loss in our implementation. The energy function is pa-
rameterized by R and t which in turn are represented as
a1,a2, t. We can apply first-order optimization algorithms
such as SGD, Adam, etc. to minimize the energy function,
but higher-order optimizers are also applicable since the
number of parameters is small. The complete algorithm is
described in Alg. 1.

5. Experiments
We analyze the proposed model in two registration sce-

narios: pairwise registration where we estimate an SE(3)
transformation between two 3D scans or fragments, and
multi-way registration which generates a final reconstruc-
tion and camera poses for all fragments that are globally
consistent. Here, pairwise registration serves as a critical
module in multi-way registration.

For pairwise registration, we use the 3DMatch bench-
mark [47] which consists of 3D point cloud pairs from vari-
ous real-world scenes with ground truth transformations es-
timated from RGB-D reconstruction pipelines [17, 10]. We
follow the train/test split and the standard procedure to gen-
erate pairs with at least 30% overlap for training and test-
ing [12, 11, 9]. For multi-way registration, we use the simu-
lated Augmented ICL-NUIM dataset [6, 18] for quantitative

Algorithm 1: Deep Global Registration

Input: X ∈ Rn×3, Y ∈ Rm×3
Output: R ∈ SO(3), t ∈ R3×1

1 Fx ← Feature(X) // § 3.1

2 Fy ← Feature(Y )
3 Jx→y ← NearestNeighbor(Fx,Fy) // § 3.2

4 M← {(i, Jx→y,i) | i ∈ [1, ..., n]}
5 w← InlierProbability(M)
6 if Eiφ(wi) < τs then
7 return SafeGuardRegistration(X,Y ) // §4
8 else
9 R̂, t̂← argminR,t e

2(R, t;w, X, Y ) // § 3.3

10 a← f−1(R̂), t← t̂ // § 4.1

11 while not converging do
12 `←

∑
(i,j)∈M φ(w(i,j))L(Yj , f(a)Xi + t)

13 a← Update(a, ∂∂a`(a, t))

14 t← Update(t, ∂∂t`(a, t))

15 return f(a), t

trajectory results, and Indoor LiDAR RGB-D dataset [32]
and Stanford RGB-D dataset [6] for qualitative registration
visualizations. Note in this experiment we use networks
trained on the 3DMatch training set and do not fine-tune on
the other datasets. This illustrates the generalization abili-
ties of our models. Lastly, we use KITTI LIDAR scans [13]
for outdoor pairwise registration. As the official registration
splits do not have labels for pairwise registration, we follow
Choy et al. [9] to create pairwise registration train/val/test
splits.

For all indoor experiments, we use 5cm voxel downsam-
pling [35, 51], which randomly subsamples a single point
within each 5cm voxel to generate point clouds with uni-
form density. For safeguard registration, we use RANSAC
and the safeguard threshold τs = 0.05, which translates
to 5% of the correspondences should be valid. We train
learning-based state-of-the-art models and our network on
the training split of the 3DMatch benchmark. During train-
ing, we augment data by applying random rotations varying
from −180 to 180 degrees around a random axis. Ground-
truth pointwise correspondences are found using nearest
neighbor search in 3D space. We train the 6-dimensional
ConvNet on a single Titan XP with batch size 4. SGD is
used with an initial learning rate 10−1 and an exponential
learning rate decay factor 0.99.

5.1. Pairwise Registration

In this section, we report the registration results on the
test set of the 3DMatch benchmark [47], which contains 8
different scenes as depicted in Fig. 3. We measure transla-
tion error (TE) defined in Eq. 6, rotation error (RE) defined



Figure 3: Global registration results of our method on all 8 different test scenes in 3DMatch [47]. Best viewed in color.
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Figure 4: Overall pairwise registration recall (y-axis) on the 3DMatch benchmark with varying rotation (left image) and
translation (right image) error thresholds (x-axis). Our approach outperforms baseline methods for all thresholds while being
6.5× faster than the most accurate baseline.

in Eq. 7, and recall. Recall is the ratio of successful pairwise
registrations and we define a registration to be successful if
its rotation error and translation error are smaller than pre-
defined thresholds. Average TE and RE are computed only
on these successfully registered pairs since failed registra-
tions return poses that can be drastically different from the
ground truth, making the error metrics unreliable.

We compare our methods with various classical meth-
ods [50, 35, 45] and state-of-the-art learning based meth-
ods [41, 42, 2, 31]. All the experiments are evaluated on
an Intel i7-7700 CPU and a GTX 1080Ti graphics card
except for Go-ICP [45] tested on an Intel i7-5820K CPU.
In Table 1, we measure recall with the TE threshold 30cm
which is typical for indoor scene relocalization [30], and RE
threshold 15 degrees which is practical for partially overlap-
ping scans from our experiments. In Fig. 4, we plot the sen-
sitivity of recall on both thresholds by changing one thresh-
old and setting the other to infinity. Fig. 5 includes detailed
statistics on separate test scenes. Our system outperforms
all the baselines on recall by a large margin and achieves the

lowest translation and rotation error consistently on most
scenes.
Classical methods. To compare with classical meth-
ods, we evaluate point-to-point ICP, Point-to-plane ICP,
RANSAC [35], and FGR [50], all implemented in
Open3D [51]. In addition, we test the open-source
Python bindings of Go-ICP [45] and Super4PCS [29].
For RANSAC and FGR, we extract FPFH from voxel-
downsampled point clouds. The results are shown in Ta-
ble 1.

ICP variants mostly fail as the dataset contains challeng-
ing 3D scan sequences with small overlap and large cam-
era viewpoint change. Super4PCS, a sampling-based algo-
rithm, performs similarly to Go-ICP, an ICP variant with
branch-and-bound search.

Feature-based methods, FGR and RANSAC, perform
better. When aligning 5cm-voxel-downsampled point
clouds, RANSAC achieves recall as high as 70%, while
FGR reaches 40%. Table 1 also shows that increasing the
number of RANSAC iterations by a factor of 2 only im-
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Figure 5: Analysis of 3DMatch registration results per scene. Row 1: recall rate (higher is better). Row 2-3: TE and RE
measured on successfully registered pairs (lower is better). Our method is consistently better on all scenes, which were not
seen during training. Note: a missing bar corresponds to zero successful alignments in a scene.

Table 1: Row 1-6: registration results of our method and
classical global registration methods on point clouds vox-
elized with 5cm voxel size. Our method outperforms
RANSAC and FGR while being as fast as FGR. Row 7-10:
results of ICP variants. Row 11 - 12: results of learning-
based methods. The learning-based methods generally fail
on real-world scans. Time includes feature extraction.

Recall TE (cm) RE (deg) Time (s)
Ours w/o safeguard 85.2% 7.73 2.58 0.70
Ours 91.3% 7.34 2.43 1.21
FGR [50] 42.7% 10.6 4.08 0.31
RANSAC-2M [35] 66.1% 8.85 3.00 1.39
RANSAC-4M 70.7% 9.16 2.95 2.32
RANSAC-8M 74.9% 8.96 2.92 4.55
Go-ICP [45] 22.9% 14.7 5.38 771.0
Super4PCS [29] 21.6% 14.1 5.25 4.55
ICP (P2Point) [51] 6.04% 18.1 8.25 0.25
ICP (P2Plane) [51] 6.59% 15.2 6.61 0.27
DCP [41] 3.22% 21.4 8.42 0.07
PointNetLK [2] 1.61% 21.3 8.04 0.12

proves performance marginally. Note that our method is

about twice as fast as RANSAC with 2M iterations while
achieving higher recall and registration accuracy.
Learning-based methods. We use 3DRegNet [31], Deep
Closest Point (DCP) [41], PRNet [42], and PointNetLK [2]
as our baselines. We train all the baselines on 3DMatch
with the same setup and data augmentation as ours for all
experiments.

For 3DRegNet, we follow the setup outlined in [31], ex-
cept that we do not manually filter outliers with ground
truth, and train and test with the standard realistic setup.
We find that the registration loss of 3DRegNet does not con-
verge during training and the rotation and translation errors
are consistently above 30 degrees and 1m during test.

We train Deep Closest Point (DCP) with 1024 randomly
sampled points for each point cloud for 150 epochs [41].
We initialize the network with the pretrained weights pro-
vided by the authors. Although the training loss converges,
DCP fails to achieve reasonable performance for point
clouds with partial overlap. DCP uses a singly stochas-
tic matrix to find correspondences, but this formulation as-
sumes that all points in point cloud X have at least one
corresponding point in the convex hull of point cloud Y .



Table 2: ATE (cm) error on the Augmented ICL-NUIM dataset with simulated depth noise. For InfiniTAM, the loop closure
module is disabled since it fails in all scenes. For BAD-SLAM, the loop closure module only succeeds in ‘Living room 2’.

ElasticFusion [43] InfiniTAM [21] BAD-SLAM [39] Multi-way + FGR [50] Multi-way + RANSAC [51] Multi-way + Ours
Living room 1 66.61 46.07 fail 78.97 110.9 21.06
Living room 2 24.33 73.64 40.41 24.91 19.33 21.88
Office 1 13.04 113.8 18.53 14.96 14.42 15.76
Office 2 35.02 105.2 26.34 21.05 17.31 11.56
Avg. Rank 3 5 5 3.5 2.5 2

This assumption fails when some points inX have no corre-
sponding points in Y , as is the case for partially overlapping
fragments. We also tried to train PRNet [42] on our setup,
but failed to get reasonable results due to random crashes
and high-variance training losses.

Lastly, we fine-tune PointNetLK [2] on 3DMatch for 400
epochs, starting from the pretrained weights provided by the
authors. PointNetLK uses a single feature that is globally
pooled for each point cloud and regresses the relative pose
between objects, and we suspect that a globally pooled fea-
ture fails to capture complex scenes such as 3DMatch.

In conclusion, while working well on object-centric syn-
thetic datasets, current end-to-end registration approaches
fail on real-world data. Unlike synthetic data, real 3D point
cloud pairs contain multiple objects, partial scans, self-
occlusion, substantial noise, and may have only a small de-
gree of overlap between scans.

5.2. Multi-way Registration

Multi-way registration for RGB-D scans proceeds via
multiple stages. First, the pipeline estimates the camera
pose via off-the-shelf odometry and integrates multiple 3D
scans to reduce noise and generate accurate 3D fragments
of a scene. Next, a pairwise registration algorithm roughly
aligns all fragments, followed by multi-way registration [6]
which optimizes fragment poses with robust pose graph op-
timization [23].

We use a popular open-source implementation of this
registration pipeline [51] and replace the pairwise registra-
tion stage in the pipeline with our proposed modules. Note
that we use the networks trained on the 3DMatch training
set and test on the multi-way registration datasets [18, 32,
6]; this demonstrates cross-dataset generalization.

We test the modified pipeline on the Augmented ICL-
NUIM dataset [6, 18] for quantitative trajectory results, and
Indoor LiDAR RGB-D dataset [32] and Stanford RGB-D
dataset [6] for qualitative registration visualizations. We
measure the absolute trajectory error (ATE) on the Aug-
mented ICL-NUIM dataset with simulated depth noise.
As shown in Table 2, compared to state-of-the-art online
SLAM [43, 21, 39] and offline reconstruction methods [50],
our approach yields consistently low error across scenes.

For qualitative results, we compare pairwise fragment
registration on these scenes against FGR and RANSAC in

Table 3: Registration on the KITTI test split [13, 9]. We use
thresholds of 0.6m and 5 degrees. ‘Ours + ICP’ refers to our
method followed by ICP for fine-grained pose adjustment.
The runtime includes feature extraction.

Recall TE (cm) RE (deg) Time (s)
FGR [50] 0.2% 40.7 1.02 1.42
RANSAC [35] 34.2% 25.9 1.39 1.37
FCGF [9] 98.2% 10.2 0.33 6.38
Ours 96.9% 21.7 0.34 2.29
Ours + ICP 98.0% 3.46 0.14 2.51

Fig. 6. Full scene reconstruction results are shown in the
supplement.

5.3. Outdoor LIDAR Registration

We use outdoor LIDAR scans from the KITTI
dataset [13] for registration, following [9]. The registra-
tion split of Choy et al. [9] uses GPS-IMU to create pairs
that are at least 10m apart and generated ground-truth trans-
formation using GPS followed by ICP to fix errors in GPU
readings. We use FCGF features [9] trained on the train-
ing set of the registration split to find the correspondences
and trained the 6D ConvNet for inlier confidence prediction
similar to how we trained the system for indoor registration.
We use voxel size 30cm for downsampling point clouds for
all experiments. Registration results are reported in Tab. 3
and visualized in Fig. 7.

6. Conclusion

We presented Deep Global Registration, a learning-
based framework that robustly and accurately aligns real-
world 3D scans. To achieve this, we used a 6D con-
volutional network for inlier detection, a differentiable
Weighted Procrustes algorithm for scalable registration, and
a gradient-based optimizer for pose refinement. Experi-
ments show that our approach outperforms both classical
and learning-based registration methods, and can serve as a
ready-to-use plugin to replace alternative registration meth-
ods in off-the-shelf scene reconstruction pipelines.



(a) Real-world: Apartment

(b) Real-world: Boardroom

(c) Synthetic: Office

(d) Real-world: Copyroom

(e) Real-world: Loft

(f) Synthetic: Livingroom

Figure 6: Fragment registrations on [6, 32]. From left
to right: FGR [50], RANSAC [35], Ours. Row 1-3: our
method succeeds on scenes with small overlaps or ambigu-
ous geometry structures while other methods fail. Row 4-6:
by combining Weighted Procrustes and gradient-based re-
finement, our method outputs more accurate registrations in
one pass, leading to better aligned details.
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