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Abstract

Many problems in science and engineering can be for-
mulated in terms of geometric patterns in high-dimensional
spaces. We present high-dimensional convolutional net-
works (ConvNets) for pattern recognition problems that
arise in the context of geometric registration. We first study
the effectiveness of convolutional networks in detecting lin-
ear subspaces in high-dimensional spaces with up to 32 di-
mensions: much higher dimensionality than prior applica-
tions of ConvNets. We then apply high-dimensional Con-
vNets to 3D registration under rigid motions and image
correspondence estimation. Experiments indicate that our
high-dimensional ConvNets outperform prior approaches
that relied on deep networks based on global pooling op-
erators.

1. Introduction
Finding structure in noisy data is a general problem that

arises in many different disciplines. For example, robust
linear regression requires finding a pattern (line, plane) in
noisy data. 3D registration of point clouds requires the iden-
tification of veridical correspondences in the presence of
spurious ones [6]. Structure from motion (SfM) pipelines
use verification based on prescribed geometric models to
filter spurious image matches [40]. A variety of such appli-
cations can benefit from improved methods for the detection
of geometric structures in noisy data.

Such detection is challenging. Data points that belong
to the sought-after structure often constitute only a small
fraction, while the majority are outliers. Various algo-
rithms have been proposed over the years to cope with noisy
data [3, 11, 16, 21, 22, 34, 38, 41], but they are usually spe-
cific to a subset of problems.

Recent works have advocated for using deep net-
works [35, 48, 51] to learn robust models to classify ge-
ometric structures in the presence of outliers. Deep net-
works offer significant flexibility and the promise to replace
hand-crafted algorithms and heuristics by models learned
directly from data. However, due to the unstructured na-
ture of the data in geometric problems, existing works have
treated such data as unordered sets, and relied on network

architectures based predominantly on global pooling oper-
ators and multi-layer perceptrons (MLPs) [33, 49]. Such
network architectures lack the capacity to model local geo-
metric structures and do not leverage the nature of the data,
which is often embedded in a (high-dimensional) metric
space and has a meaningful geometric structure.

In this work, we introduce a novel type of deep convo-
lutional network that can operate in high dimensions. Our
network takes a sparse tensor as input and employs high-
dimensional convolutions as the fundamental operator. The
distinguishing characteristic of our approach is that it is able
to effectively leverage local neighborhood relations together
with global context even for high-dimensional data. Our
network is fully-convolutional, translation-invariant, and in-
corporates best practices from the development of Con-
vNets for two-dimensional image analysis [18, 23, 36].

To demonstrate the effectiveness and generality of our
approach, we tackle various geometric pattern recognition
problems. We begin with the diagnostic setting of linear
subspace detection and show that our construction is effec-
tive in high-dimensional spaces and at low signal-to-noise
ratios. We then apply the presented construction to geomet-
ric pattern recognition problems that arise in computer vi-
sion, including registration of three-dimensional point sets
under rigid motion (a 6D problem) and correspondence es-
timation between images under epipolar constraints (a 4D
problem). In both settings, the problem is made difficult by
the presence of outliers.

Our experiments indicate that the presented construction
can reliably detect geometric patterns in high-dimensional
data that is heavily contaminated by noise. It can op-
erate in regimes where existing algorithms break down.
Our approach significantly improves 3D registration per-
formance when combined with standard approaches for
3D point cloud alignment [6, 39, 53, 54]. The presented
high-dimensional convolutional network also outperforms
state-of-the-art methods for correspondence estimation be-
tween images [48, 51]. All networks and training scripts
are available at https://github.com/chrischoy/
HighDimConvNets.
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2. Related Work
Robust model fitting. Fitting a geometric model to a set
of observations that are contaminated by outliers is a fun-
damental problem that frequently arises in computer vision
and related fields. The most widely used approach for ro-
bust geometric model fitting is RANdom SAmple Consen-
sus (RANSAC) [15]. Due to its fundamental importance,
many variants and improvements of RANSAC have been
proposed over the years [3, 11, 25, 34, 38, 41, 44, 43].

Alternatively, algorithms for robust geometric model fit-
ting are frequently derived using techniques from robust
statistics [16, 21, 22, 52], where outlier rejection is per-
formed by equipping an estimator with a cost function that
is insensitive to gross outliers. While the resulting algo-
rithms are computationally efficient, they require careful
initialization and optimization procedures to avoid poor lo-
cal optima [53].

Another line of work proposes to find globally optimal
solutions to the consensus maximization problem [5, 26,
47]. However, these approaches are currently computation-
ally too demanding for many practical applications.

3D registration. Finding reliable correspondences between
a pair of surfaces is an essential step for 3D reconstruc-
tion [6, 12, 14, 31]. The problem has been convention-
ally framed as an energy minimization problem which can
be solved using various techniques such as branch and
bound [46], Riemannian optimization [37], mixed-integer
programming [24], robust error minimization [53], semi-
definite programming [20, 28], or random sampling [6].

Recent work has begun to leverage deep networks for ge-
ometric registration [2, 30, 32]. These works are predom-
inantly based on PointNet and related architectures, which
detect patterns via global pooling operations [33, 49]. In
contrast, we develop a high-dimensional convolutional net-
work that operates at multiple scales and can leverage not
just global but also local geometric structure.

Image correspondences. Yi et al. [48] and Zhang et
al. [51] reduce essential matrix estimation to classification
of correspondences into inliers and outliers. Ranftl and
Koltun [35] present a similar formulation for fundamental
matrix estimation. Brachmann and Rother [4] propose to
learn a neural network that guides hypothesis sampling in
RANSAC for model fitting problems. Dang et al. [13] pro-
pose a numerically stable loss function for essential matrix
estimation.

All of these works employ variants of PointNets to clas-
sify inliers in an unordered set of putative correspondences.
These architectures, based on pointwise MLPs, lack the
capacity to model local geometric structure. In contrast,
we develop convolutional networks that directly leverage
neighborhood relations in the high-dimensional space of
correspondences.

3. High-Dimensional Convolutional Networks
In this section, we introduce the two main building

blocks of our high-dimensional convolutional network con-
struction: generalized sparse tensors and generalized con-
volutions.

3.1. Sparse Tensor and Convolution

A tensor is a multi-dimensional array that represents
high-order data. A D-th order tensor T requires D indices
to uniquely access its elements. We denote such indices or
coordinates as x = [x1, ..., xD] and the element at the co-
ordinate as T[x] similar to how we access components in
a matrix. Likewise, a sparse tensor is a high-dimensional
extension of a sparse matrix where the majority of the ele-
ments are 0. Concretely,

T[xi] =

{
fi if xi ∈ C
0 otherwise,

(1)

where C = {xi | xi ∈ ND,T[xi] 6= 0}Ni=1 is the set of coor-
dinates with non-zero values, N is the number of non-zero
elements, and fi is the non-zero value at the i-th coordinate.
A sparse tensor feature map is a (D + 1)-th order tensor
with fi ∈ RND+1 as we use the last dimension to denote the
feature dimension. A sparse tensor has the constraint that
xi ∈ ND. We extend the sparse tensor coordinates to inte-
ger indices xi ∈ ZD and define T ∈ RℵD0 ×ND+1 where ℵ0
denotes the cardinality of the integer space |Z| to define a
generalized sparse tensor.

A convolution on this generalized sparse tensor can then
be defined as a simple extension of the generalized sparse
convolution [7]:

f out
x =

∑
i∈ND(x)∩Cin

Wif
in
x+i for x ∈ Cout, (2)

where Cin and Cout are the set of input and output locations
which is predefined by the user, Wi is a weight matrix, and
ND(x) defines a set of neighbors of x which is defined
by the shape of the convolution kernel. For example, if the
convolution kernel is a hypercube of sizeK,ND(x)∩C in is
a set of all the non-zero elements of the input sparse tensor
centered at x within the L∞-ball of extent K.

3.2. Convolutional Networks

We design a high-dimensional fully-convolutional neural
network for sparse tensors (sparse tensor networks) based
on generalized convolution [7, 9]. We use U-shaped net-
works [36] to capture large receptive fields while maintain-
ing the original resolution at the final layer. The network
has residual connections [18] within layers with the same
resolution and across the network to speed up convergence



and to recover the lost spatial resolution in the last layer.
The network architecture is illustrated in Fig. 1.

For computational efficiency in high dimensions, we use
the cross-shaped kernel [7] for all convolutions. We denote
the kernel size by K. The cross-shaped kernel has non-zero
weights only for the K − 1 nearest neighbors along each
axis, which results in one weight parameter for the center
location and K − 1 weight parameters for each axis. Note
that a cross-shaped kernel is similar to separable convolu-
tion, where a full convolution is approximated by D one-
dimensional convolutions of size K. Both types of kernels
are rank-1 approximations of the full hyper-cubic kernel
KD, but separable convolution requires KD matrix mul-
tiplications, whereas the cross-shaped kernel requires only
(K − 1)D + 1 matrix multiplications.

3.3. Implementation

We extend the implementation of Choy et al. [7], which
supports arbitrary kernel shapes, to high-dimensional con-
volutional networks. To implement the sparse tensor net-
works, we need an efficient data structure that can gener-
ate a new sparse tensor as well as find neighbors within the
sparse tensor. Choy et al. [7] use a hash table that is ef-
ficient for both insertion and search. We replaced the hash
table with a faster and more efficient variant [1]. In addition,
as the neighbor search can be run in parallel, we create an
iterator function that can run in parallel with OpenMP [29]
by dividing the table into smaller parallelization blocks.

Lastly, U-shaped networks generate hierarchical feature
maps that expand the receptive field. Choy et al. [7] use
stride-K convolutions with kernel size ≥ K to generate
lower-resolution hierarchical feature maps. Still, such im-
plementation requires iterating over at least KD elements
within a hypercubic kernel as the coordinates are stored in a
hash table, which results in O(NKD) complexity where N
is the cardinality of input. Consequently, it becomes infea-
sible to store the weights on the GPU for high-dimensional
spaces. Instead of strided convolutions, we propose an ef-
ficient implementation of stride-K sum pooling layers with
kernel size K. Instead of iterating over all possible neigh-
bors, we iterate over all input coordinates and round them
down to multiples of K, which requires only O(N) com-
plexity.

4. Geometric Pattern Recognition

Our approach uses convolutional networks to recognize
geometric patterns in high-dimensional spaces. Specif-
ically, we classify each point xi in a high-dimensional
dataset X = {xi}Ni=1 as an inlier or an outlier. We start
by validating our approach on synthetic datasets of varying
dimensionality and then show results on 3D registration and
essential matrix estimation.
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Figure 1: A generic U-shaped high-dimensional convolutional net-
work architecture. The numbers next to each block indicate kernel
size, stride, and the number of channels. The strided convolutions
that reduce the resolution of activations are shifted upward to in-
dicate different levels of resolution.

For all experiments, we first quantize the input coordi-
nates to create a sparse tensor of order D + 1, where the
last dimension denotes the feature channels. The network
then predicts a logit score for each non-zero element in the
sparse tensor to indicate if a point is part of the geometric
pattern or if it is an outlier.

4.1. Line and Plane Detection

We first test the capabilities of our fully-convolutional
networks on simple high-dimensional pattern recognition
problems that involve detecting linear subspaces amidst
noise. Our dataset consists of uniformly sampled noise
from the D-dimensional space and a small number of sam-
ples from a line under a Gaussian noise model. The num-
ber of outliers increases exponentially in the dimension
(O(LD)), while the number of inliers increases sublinearly
(O(
√
LD)), where L is the extent of the domain. Fur-

ther details are given in the supplement. The network pre-
dicts a likelihood score for each non-zero element in the
input sparse tensor, and we threshold inliers with probabil-
ity ≥ 0.5. We estimate the line equation from the predicted
inliers using unweighted least squares.

We use PointNet variants as the baselines for this exper-
iment [33, 48, 49]. For Zaheer et al. [49], we were not able
to get reasonable results with the network architecture pro-
posed in the paper. We thus augmented the architecture with
batch normalization and instance normalization layers after
each linear transformation similar to Yi et al. [48], which
boosted performance significantly. For all experiments, we
use the cross-entropy loss. We used the same training hy-
perparameters, including loss, batch size, optimizer, and
learning rate schedule for all approaches.

We use three metrics to analyze the performance of the
networks: Mean Squared Error (MSE), F1 score, and Av-
erage Precision (AP). For the MSE, we estimate the line
equation with Least Squares to fit the line to the inliers. The
second metric is the F1 score, the harmonic mean of preci-
sion and recall. In many problems, F1 score is a direct indi-
cator of the performance of a classifier, and we also found a



Table 1: Line detection in high-dimensional spaces in the presence of extreme noise. All networks are trained with the cross-entropy loss
for 40 epochs. Inlier ratios are listed on the left. In the 32-dimensional setting, only 7 out of 10,000 data points are inliers. The table
reports Mean Squared Error (MSE), F1 score, and Average Precision (AP) of our approach (a high-dimensional ConvNet) versus baselines
(PointNet variants). MSE: lower is better. F1 and AP: higher is better.

Qi et al. [33] Zaheer et al. [49] + BN + IN Yi et al. [48] Ours

Dim. Inlier Ratio MSE F1 AP (AUC) MSE F1 AP (AUC) MSE F1 AP (AUC) MSE F1 AP (AUC)

4 15.59% 1.337 0.025 0.164 6.33E-4 0.867 0.936 9.11E-5 0.981 0.996 2.33E-5 0.998 0.999
8 5.54% 2.369 0.022 0.065 0.001 0.891 0.955 2.45E-4 0.946 0.989 1.64E-5 0.999 0.999
16 2.75% 3.854 0.012 0.034 4.86E-4 0.970 0.992 0.002 0.962 0.986 3.39E-5 0.999 0.999
24 0.40% 5.372 0.021 0.011 0.676 0.634 0.691 0.775 0.610 0.674 5.34E-5 0.994 0.996
32 0.07% 6.715 0.012 6.71E-5 - 0.0 0.295 - 0.0 0.050 0.010 0.669 0.689

Table 2: Plane detection in high-dimensional spaces in the presence of extreme noise. Inlier ratios are listed on the left. In the 32-
dimensional setting, fewer than 5 out of 100,000 data points are inliers. The table reports the F1 score and Average Precision (AP) of our
approach (a high-dimensional ConvNet) versus baselines (PointNet variants). Higher is better.

Qi et al. [33] Zaheer et al. [49] + BN + IN Yi et al. [48] Ours

Dim. Inlier Ratio F1 AP (AUC) F1 AP (AUC) F1 AP (AUC) F1 AP (AUC)

4 29.96% 0.0 0.315 0.980 0.996 0.993 0.999 0.991 0.998
8 8.07% 0.0 0.088 0.985 0.999 0.990 0.999 0.998 0.999
16 0.34% 0.0 0.004 0.155 0.299 0.182 0.359 0.951 0.961
24 0.01% 0.0 1.61E-4 0.032 0.133 0.0 0.081 0.304 0.346
32 4.64E-3% 0.0 5.56E-5 0.0 0.221 0.0 0.023 0.138 0.240

Qi et al. [33] Zaheer et al. [49] Yi et al. [48] Ours

Figure 2: 16D line detection projected to a 2D plane for visualization. Black dots are noise and blue dots are samples from a line in the
16D space. The dashed red line is the prediction of the respective method. Samples from the ground-truth line (blue) are enlarged by a
factor of 10 for visualization.

strong correlation between F1 score and the mean squared
error. The final metric we use is average precision (AP),
which measures the area under the precision-recall curve.
We report the results in Tab. 1 and provide qualitative ex-
amples in Fig. 2. Tab. 1 lists the inlier ratio to indicate the
difficulty of each task.

In a second experiment, we create another synthetic
dataset where the inlier pattern is sampled from a plane
spanned by two vectors: {c1v1 + c2v2 + c | c1, c2 ∈ R}.
The two basis vectors are sampled uniformly from the D-
dimensional unit hypercube. We use the same training pro-
cedure for our network and the baselines, and report the re-
sults in Tab. 2.

We found that the convolutional network is more robust
to noise in high-dimensional spaces than the PointNet vari-
ants. In addition, the convolutional network training con-
verges quickly, as shown in Fig. 3, which is a further indica-
tion that the architecture can effectively leverage the struc-

ture of the data.

4.2. 3D Registration

A typical 3D registration pipeline consists of 1) feature
extraction, 2) feature matching, 3) match filtering, and 4)
global registration. In this section, we show that in the
match filtering stage the correct (inlier) correspondences
form a 6-dimensional geometric structure. We then extend
our geometric pattern recognition networks to identify inlier
correspondences in this 6-dimensional space.

Let X be a set of points sampled from a 3D surface,
X = {xi | xi ∈ R3}Ni=1, and let X ′ be a subset of X that
went through a rigid transformation T , X ′ = {T (x) | x ∈
S,S ⊆ X}. For example, X ′ could be a 3D scan from a
different perspective that has an overlap with X . We denote
a correspondence between points xi ∈ X and x′j ∈ X ′ as
xi ↔ x′j . When we form an ordered pair (xi,x

′
j) ∈ R6, the

ground truth correspondences satisfy T (x) = x′ along the
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Figure 3: 16D line detection, progression of training. We plot the running mean and standard deviation of precision, recall, and F1 score
on the validation set. Our high-dimensional convolutional network quickly attains much higher accuracy than the baselines.
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Figure 4: The set Y is rigid translation of the set X = [1, ..., 7],
Y = {x+4|x ∈ X}. The ordered pairs of correspondences (blue)
form a line segment while outliers (red) form random noise outside
the line.

common 3D geometry S whereas an incorrect correspon-
dence implies T (x) 6= x′. For example, in Fig. 4, we visu-
alize the ordered pairs from 1-dimensional sets. Note that
the inliers follow the geometry of the inputs and form a line
segment. Similarly, the geometry (x,x′) ∈ R6 or (x, T (x))
for x ∈ S forms a surface in 6-dimensional space.

Theorem 1 The 6D representation of ground-truth 3D cor-
respondences (x,x′) lies on the intersection of three hy-
perplanes where each hyperplane is a row of the following

block equation
[
R −I

] [x
x′

]
+ t = 0.

Proof: A ground-truth 3D correspondence, x ↔ x′, must
satisfy Rx + t = x′. We move x′ to the LHS and convert
both x and x′ to the 6D representation to get three hyper-
plane equations. �

Corollary 1.1 The rank of the block matrix,
[
R −I

]
, is

3 since R and I are orthogonal matrices. Thus, all hyper-
planes defined by the block matrix intersect each other and
the 6D inlier correspondences form a 3D plane since the
solution of the intersection of three hyperplanes in the 6D

space,
[
R −I

] [x
x′

]
+ t = 0, is a 3D plane.

We can thus use our high-dimensional convolutional net-
work construction to segment the 6-dimensional set of cor-

respondences into inliers and outliers by estimating the in-
lier likelihood for each correspondence.

Network. We use a 6-dimensional instantiation of the U-
shaped convolutional network presented in Sec. 3. As the
dimensionality is manageable, we use hypercubic kernels.
The network takes an order-6 sparse tensor whose coordi-
nates are correspondences (xi,x

′
j) ∈ R6. We discretize the

coordinates with the voxel size used to extract features. Our
baseline is Yi et al. [48], which takes dimensionless mean-
centered correspondences without discretization. We train
the networks to predict the inlier probability of each corre-
spondence with the balanced cross-entropy loss.

Dataset. We use the 3DMatch dataset for this experi-
ment [50]. The 3DMatch dataset is a composition of var-
ious 3D scan datasets [17, 45, 50] and thus covers a wide
range of scenes and different types of 3D cameras. We
integrate RGB-D images to form fragments of the scenes
following [50]. During training, we randomly rotate each
scene on the fly to augment the dataset. We use a popular
hand-designed feature descriptor, FPFH [39], to compute
correspondences. Note, however, that our pipeline is ag-
nostic to the choice of feature and can also be used with
learned features [9].

We follow the standard procedures in the 3D registra-
tion literature to generate candidate correspondences. First,
since 3D scans often exhibit irregular densities, we resam-
ple the input point clouds using a voxel grid to produce a
regular point cloud. We use voxel sizes of 2.5cm and 5cm
for our experiments. Next, we compute FPFH features and
find the nearest neighbor for each point in feature space to
form correspondences. The correspondences obtained from
this procedure often exhibit a very low inlier ratio, as lit-
tle as 0.87% with a 2.5cm voxel size. Among these cor-
respondences, we regard x ↔ x′ as an inlier if it satisfies
‖T(x)− x′‖2 < τ and all others as outliers. We set τ to be
two times the voxel size.

Finally, we use a registration method to convert the fil-
tered correspondences into a final registration result. We
show results with two different registration methods. The



Table 3: Pairwise registration on 3DMatch test scenes with 2.5cm downsampling. Translation Error (TE), Rotation Error (RE), success
rate. Registration is considered successful if TE < 30cm and RE < 15◦.

FPFH + FGR FPFH + Ours + FGR FPFH + RANSAC FPFH + Ours + RANSAC
Inlier Ratio TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate

Kitchen 1.62% 10.98 4.99 37.15 5.68 2.21 65.61 6.25 2.17 44.47 5.90 1.98 69.57
Home 1 2.71% 11.12 4.40 45.51 6.52 2.08 80.77 7.07 2.19 61.54 6.00 1.87 80.13
Home 2 2.83% 9.61 3.83 36.54 7.13 2.56 64.42 6.47 2.40 50.00 7.86 2.56 69.71
Hotel 1 1.35% 12.31 5.09 33.19 7.95 2.65 76.11 7.48 2.75 48.67 7.38 2.38 80.09
Hotel 2 1.54% 12.27 5.22 25.00 7.86 2.56 69.23 9.54 3.18 47.12 6.40 2.25 70.19
Hotel 3 1.59% 13.52 7.04 27.78 5.39 1.99 72.22 5.91 2.46 59.26 5.85 2.36 81.48
Study 0.87% 16.10 6.01 16.78 9.61 2.64 53.42 10.05 3.01 30.48 8.51 2.23 56.16
Lab 1.59% 10.48 4.80 42.86 7.69 2.44 61.04 8.01 2.31 45.45 6.64 2.12 68.83

Average 12.05 5.17 33.10 7.23 2.39 67.85 7.60 2.56 48.37 6.82 2.22 72.02
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Figure 5: The success rate of baseline methods and ours on the 3DMatch benchmark [50] with 5cm voxel size. FGR denotes registration
with FPFH [39] and Zhou et al. [53], Yi et al. + X denotes FPFH filtering with Yi et al. [48] and registration with X, and Ours + X denotes
our method for filtering followed by registration with X.

first is Fast Global Registration [53], which directly min-
imizes a robust error metric. The second is a variant of
RANSAC [15] that is specialized to 3D registration [54].

Evaluation. We use three standard metrics to evaluate
registration performance: rotation error, translation error,
and success rate. The rotation error measures the abso-
lute angular deviation from the ground truth rotation R̂,

arccos Tr(R̂T R)−1
2 . Similarly, the translation error measures

the deviation of the translation ‖t̂ − t‖2. When we report
these metrics, we exclude alignments that exceed a thresh-
old following [9] since the results of the registration meth-
ods [53, 15] can be arbitrarily bad when registration fails.
Finally, the success rate is the ratio of registrations that were
successful; registration is considered successful if both ro-
tation and translation errors are within the respective thresh-
olds. For all experiments, we use a rotation error of 15 de-
grees and a translation error of 30cm as the thresholds.

Tab. 3 shows the 3D registration pipelines with and with-
out our network to filter the outliers. Note that for FGR [53],
we observe a considerable improvement with our network
since FGR assumes more accurate correspondences as in-
puts. The improvement is smaller with RANSAC, since it
is more robust to high outlier rates. Although the inlier ra-
tio is as low as 1% for many 3D scene pairs, our network
generates very accurate predictions. Similar to the linear

regression experiments in Fig. 3, we find that the network
converges very quickly. We compare to the model of Yi et
al. [48] in Fig. 5 with 5cm voxel size to study the robust-
ness of the 6-dimensional convolutional network to voxel
size and find that the convolutional network improves the
registration success rate significantly even for the higher in-
lier ratio seen with a 5cm discretization resolution. Qualita-
tively, our network accurately filters out outliers even in the
presence of extreme noise (Fig. 6).

4.3. Filtering Image Correspondences

In this section, we apply the high-dimensional convolu-
tional network to image correspondence inlier detection. In
the projective space P2, an inlier correspondence u↔ u′

must satisfy u′>Eu = 0, where E is an essential matrix, u
denotes a normalized homogeneous coordinate u = K−1x,
x is the corresponding homogeneous image coordinate,
and K is the camera intrinsic matrix. When we expand
u′>Eu = 0, we get u′1Au1+u′2Bu1+u′1Cu2+u′2Du2+
Eu′1 + Fu′2 + Gu1 + Hu2 + I = 0, which is a quadri-
variate quadratic function. If there is a real-valued solution,
there are infinitely many solutions that form either an ellipse
(sphere), a parabola, or a hyperbola. These are known as
conic sections. Thus a set of ground-truth image correspon-
dences will form a hyper conic section in 4-dimensional
space. We use a convolutional network to predict the likeli-



Kitchen Bedroom

Livingroom Study

Figure 6: Visualization of color-coded correspondences before and after outlier filtering (Sec. 4.2). For each pair, we visualize 100 random
correspondences from the candidate set on the left and 100 random correspondences after outlier pruning on the right. Red lines are outlier
correspondences and blue lines are inlier correpondences. On the bottom right pair, there are two identical chairs. The average inlier ratio
is 1.76%.

hood that a correspondence is an inlier.

Dataset: YFCC100M. We use the large-scale photo-
tourism dataset YFCC100M [42] for the experiment. The
dataset contains 100M Flicker images of tourist hot-spots
with metadata, which is curated into 72 locations with
camera extrinsics estimated using SfM [19]. We follow
Zhang et al. [51] to generate a dataset and use 68 locations
for training and the others for testing. We filtered any image
pairs that have fewer than 100 overlapping 3D points from
SfM to guarantee non-zero overlap between images.

We use SIFT features [27] to create correspondences and
label a correspondence to be a ground-truth inlier if the
symmetric epipolar distance of the correspondence is below
a certain threshold using the provided camera parameters,
i.e., ( r2

l21 + l22
+

r2

l′21 + l′22

)
< τ, (3)

where l = u′>E = (l1, l2, l3) is a homogeneous line, l′ =
Eu, and r = u′>Eu.

Network. We convert a set of candidate image correspon-
dences into an order-5 sparse tensor with four spatial dimen-
sions and vectorized features. The coordinates are defined

as normalized image coordinates u. We define integer co-
ordinates by discretizing the normalized image coordinates
with quantization resolution 0.01 and additionally use the
normalized coordinates as features. We use state-of-the-art
baselines on the YFCC dataset and two variants of convo-
lutional networks for this task. The first variant is a U-
shaped convolutional network (Ours); the second network
is a ResNet-like network with spatial correlation modules
(Ours + SC). Spatial correlation modules [51] are blocks of
shared MLPs that encode global context from a set of cor-
respondences.

Note that unlike the FPFH descriptor [39], which ex-
tracts features densely, SIFT features are extracted from
only a few keypoints sparsely in the image. In the 4-
dimensional space of correspondences, the sparsity gets
even worse as the volume increases multiplicatively while
the number of points (correspondences) stay the same. Such
sparsity leads to fewer neighbors in the high-dimensional
space, which results in the degeneration of the convolu-
tion to a multi-layer perceptron. Our convolutional net-
works remain effective in this setting, but their distinctive
ability to leverage local geometric structure is not strongly
utilized. To increase the density of the correspondences in



the 4-dimensional space, we use a dense fully convolutional
feature UCN [10]. We train the UCN on the YFCC100M
training set for 100 epochs and we follow the preprocess-
ing stage outlined in the open-source version [8] to cre-
ate correspondences. Training and testing on UCN follow
the same standard procedure. We use the balanced cross-
entropy loss [48] for all experiments.

Evaluation. We use precision, recall, and F1 score to
evaluate correspondence classification accuracy. We use
τ = 10−4 for the distance threshold to define ground truth-
correspondences. Our network predicts a correspondence to
be accurate if its inlier probability prediction is above 0.5.
We provide quantitative results in Tab. 4 and qualitative re-
sults in Fig. 7. Our approachs outperform the PointNet vari-
ants [48, 51] as measured by the F1 score.

5. Conclusion
Many interesting problems in computer vision involve

geometric patterns in high-dimensional spaces. We pro-
posed high-dimensional convolutional networks for ge-
ometric pattern recognition. We presented a fully-
convolutional network architecture that is efficient and able
to find patterns in high-dimensional data even in the pres-
ence of severe noise. We validated the efficacy of our ap-
proach on tasks such as line and plane detection, 3D regis-
tration, and geometric filtering of image correspondences.
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Figure 7: Matching results using Yi et al. [48] (first row), Zhang et al. [51] (second row), Ours + SC (third row) and Ours + UCN (last
row). We visualize correspondences with inlier probability above 0.5. We color a correspondence green if it is a true positive (symmetric
epipolar distance smaller than 10−4) and red otherwise.


