
Chapter 2

Supervised Reconstruction

2.1 Introduction

Rapid and automatic 3D object prototyping has become a game-changing innovation in many appli-

cations related to e-commerce, visualization, and architecture, to name a few. This trend has been

boosted now that 3D printing is a democratized technology and 3D acquisition methods are accurate

and efficient [15]. Moreover, the trend is also coupled with the diffusion of large scale repositories

of 3D object models such as ShapeNet [13].

Most of the state-of-the-art methods for 3D object reconstruction, however, are subject to a

number of restrictions. Some restrictions are that: i) objects must be observed from a dense number

of views; or equivalently, views must have a relatively small baseline. This is an issue when users

wish to reconstruct the object from just a handful of views or ideally just one view (see Fig. 2.1(a));

ii) objects’ appearances (or their reflectance functions) are expected to be Lambertian (i.e. non-

reflective) and the albedos are supposed be non-uniform (i.e., rich of non-homogeneous textures).

These restrictions stem from a number of key technical assumptions. One typical assumption

is that features can be matched across views [21, 35, 4, 18] as hypothesized by the majority of the

methods based on SFM or SLAM [24, 22]. It has been demonstrated (for instance see [37]) that if

the viewpoints are separated by a large baseline, establishing (traditional) feature correspondences is

extremely problematic due to local appearance changes or self-occlusions. Moreover, lack of texture

on objects and specular reflections also make the feature matching problem very difficult [9, 43].

In order to circumvent issues related to large baselines or non-Lambertian surfaces, 3D volumetric

reconstruction methods such as space carving [45, 33, 23, 5] and their probabilistic extensions [12]

have become popular. These methods, however, assume that the objects are accurately segmented

from the background or that the cameras are calibrated, which is not the case in many applications.

A different philosophy is to assume that prior knowledge about the object appearance and shape

is available. The benefit of using priors is that the ensuing reconstruction method is less reliant on
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finding accurate feature correspondences across views. Thus, shape prior-based methods can work

with fewer images and with fewer assumptions on the object reflectance function as shown in [16,

6, 25]. The shape priors are typically encoded in the form of simple 3D primitives as demonstrated

by early pioneering works [34, 39] or learned from rich repositories of 3D CAD models [52, 41,

11], whereby the concept of fitting 3D models to images of faces was explored to a much larger

extent [10, 38, 31]. Sophisticated mathematical formulations have also been introduced to adapt 3D

shape models to observations with different degrees of supervision [40] and different regularization

strategies [42].

This paper is in the same spirit as the methods discussed above, but with a key difference.

Instead of trying to match a suitable 3D shape prior to the observation of the object and possibly

adapt to it, we use deep convolutional neural networks to learn a mapping from observations to their

underlying 3D shapes of objects from a large collection of training data. Inspired by early works that

used machine learning to learn a 2D-to-3D mapping for scene understanding [44, 29], data driven

approaches have been recently proposed to solve the daunting problem of recovering the shape of

an object from just a single image [50, 30, 20, 47] for a given number of object categories. In our

approach, however, we leverage for the first time the ability of deep neural networks to automatically

learn, in a mere end-to-end fashion, the appropriate intermediate representations from data to recover

approximated 3D object reconstructions from as few as a single image with minimal supervision.

(a) Images of objects we wish to reconstruct (b) Overview of the network

Figure 2.1: (a) Some sample images of the objects we wish to reconstruct - notice that views are
separated by a large baseline and objects’ appearance shows little texture and/or are non-lambertian.
(b) An overview of our proposed 3D-R2N2: The network takes a sequence of images (or just one
image) from arbitrary (uncalibrated) viewpoints as input (in this example, 3 views of the armchair)
and generates voxelized 3D reconstruction as an output. The reconstruction is incrementally refined
as the network sees more views of the object.

Inspired by the success of Long Short-Term Memory (LSTM) [28] networks [48, 49] as well as

recent progress in single-view 3D reconstruction using Convolutional Neural Networks [17, 36], we
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propose a novel architecture that we call the 3D Recurrent Reconstruction Neural Network (3D-

R2N2). The network takes in one or more images of an object instance from different viewpoints

and outputs a reconstruction of the object in the form of a 3D occupancy grid, as illustrated in

Fig. 2.1(b). Note that in both training and testing, our network does not require any object class

labels or image annotations (i.e., no segmentations, keypoints, viewpoint labels, or class labels are

needed).

One of the key attributes of the 3D-R2N2 is that it can selectively update hidden representations

by controlling input gates and forget gates. In training, this mechanism allows the network to

adaptively and consistently learn a suitable 3D representation of an object as (potentially conflicting)

information from different viewpoints becomes available (see Fig. 2.1).

The main contributions of this paper are summarized as follows:

• We propose an extension of the standard LSTM framework that we call the 3D Recurrent

Reconstruction Neural Network which is suitable for accommodating multi-view image feeds

in a principled manner.

• We unify single- and multi-view 3D reconstruction in a single framework.

• Our approach requires minimal supervision in training and testing (just bounding boxes, but

no segmentation, keypoints, viewpoint labels, camera calibration, or class labels are needed).

• Our extensive experimental analysis shows that our reconstruction framework outperforms the

state-of-the-art method for single-view reconstruction [30].

• Our network enables the 3D reconstruction of objects in situations when traditional SFM/S-

LAM methods fail (because of lack of texture or wide baselines).

An overview of our reconstruction network is shown in Fig. 2.1(b). The rest of this paper

is organized as follows. In Section 2.2, we give a brief overview of LSTM and GRU networks.

In Section 2.3, we introduce the 3D Recurrent Reconstruction Neural Network architecture. In

Section 2.4, we discuss how we generate training data and give details of the training process.

Finally, we present test results of our approach on various datasets including PASCAL 3D and

ShapeNet in Section 5.7.

2.2 Recurrent Neural Network

In this section we provide a brief overview of Long Short-Term Memory (LSTM) networks and a

variation of the LSTM called Gated Recurrent Units (GRU).

Long Short-Term Memory Unit. One of the most successful implementations of the hidden

states of an RNN is the Long Short Term Memory (LSTM) unit [28]. An LSTM unit explicitly
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controls the flow from input to output, allowing the network to overcome the vanishing gradient

problem [28, 7]. Specifically, an LSTM unit consists of four components: memory units (a memory

cell and a hidden state), and three gates which control the flow of information from the input to the

hidden state (input gate), from the hidden state to the output (output gate), and from the previous

hidden state to the current hidden state (forget gate). More formally, at time step t when a new

input xt is received, the operation of an LSTM unit can be expressed as:

it = σ(Wixt + Uiht−1 + bi) (2.1)

ft = σ(Wfxt + Ufht−1 + bf ) (2.2)

ot = σ(Woxt + Uoht−1 + bo) (2.3)

st = ft � st−1 + it � tanh(Wsxt + Usht−1 + bs) (2.4)

ht = ot � tanh(st) (2.5)

it, ft, ot refer to the input, output, and forget gate, respectively. st and ht refer to the memory

cell and the hidden state. We use � to denote element-wise multiplication and the subscript t to

refer to an activation at time t.

Gated Recurrent Unit. A variation of the LSTM unit is the Gated Recurrent Unit (GRU)

proposed by Cho et al. [14]. An advantage of the GRU is that there are fewer computations compared

to the standard LSTM. In a GRU, an update gate controls both the input and forget gates. Another

difference is that a reset gate is applied before the nonlinear transformation. More formally,

ut = σ(WuT xt + Uu ∗ ht−1 + bf ) (2.6)

rt = σ(WiT xt + Ui ∗ ht−1 + bi) (2.7)

ht = (1− ut)� ht−1 + ut � tanh(Whxt + Uh(rt � ht−1) + bh) (2.8)

ut, rt, ht represent the update, reset, and hidden state respectively.

2.3 3D Recurrent Reconstruction Neural Network

In this section, we introduce a novel architecture named the 3D Recurrent Reconstruction Network

(3D-R2N2), which builds upon the standard LSTM and GRU. The goal of the network is to perform

both single- and multi-view 3D reconstructions. The main idea is to leverage the power of LSTM to

retain previous observations and incrementally refine the output reconstruction as more observations

become available.

The network is made up of three components: a 2D Convolutional Neural Network (2D-CNN),
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Figure 2.2: Network architecture: Each 3D-R2N2 consists of an encoder, a recurrence unit and a
decoder. After every convolution layer, we place a LeakyReLU nonlinearity. The encoder converts
a 127 × 127 RGB image into a low-dimensional feature which is then fed into the 3D-LSTM. The
decoder then takes the 3D-LSTM hidden states and transforms them to a final voxel occupancy
map. After each convolution layer is a LeakyReLU. We use two versions of 3D-R2N2: (top) a
shallow network and (bottom) a deep residual network [26].

a novel architecture named 3D Convolutional LSTM (3D-LSTM), and a 3D Deconvolutional Neu-

ral Network (3D-DCNN) (see Fig. 2.2). Given one or more images of an object from arbitrary

viewpoints, the 2D-CNN first encodes each input image x into low dimensional features T (x) (Sec-

tion 2.3.1). Then, given the encoded input, a set of newly proposed 3D Convolutional LSTM

(3D-LSTM) units (Section 2.3.2) either selectively update their cell states or retain the states by

closing the input gate. Finally, the 3D-DCNN decodes the hidden states of the LSTM units and

generates a 3D probabilistic voxel reconstruction (Section 2.3.3).

The main advantage of using an LSTM-based network comes from its ability to effectively handle

object self-occlusions when multiple views are fed to the network. The network selectively updates

the memory cells that correspond to the visible parts of the object. If a subsequent view shows parts

that were previously self-occluded and mismatch the prediction, the network would update the

LSTM states for the previously occluded sections but retain the states of the other parts (Fig. 2.2).

2.3.1 Encoder: 2D-CNN

We use CNNs to encode images into features. We designed two different 2D-CNN encoders as shown

in Fig. 2.2: A standard feed-forward CNN and a deep residual variation of it. The first network

consists of standard convolution layers, pooling layers, and leaky rectified linear units followed by

a fully-connected layer. Motivated by a recent study [26], we also created a deep residual variation

of the first network and report the performance of this variation in Section 2.5.2. According to

the study, adding residual connections between standard convolution layers effectively improves and

speeds up the optimization process for very deep networks. The deep residual variation of the

encoder network has identity mapping connections after every 2 convolution layers except for the

4th pair. To match the number of channels after convolutions, we use a 1 × 1 convolution for
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(a) inputs for each LSTM unit (b) 3D Convolutional LSTMs (c) 3D Convolutional GRUs

Figure 2.3: (a) At each time step, each unit (purple) in the 3D-LSTM receives the same feature
vector from the encoder as well as the hidden states from its neighbors (red) by a 3×3×3 convolution
(Ws ∗ht−1) as inputs. We propose two versions of 3D-LSTMs: (b) 3D-LSTMs without output gates
and (c) 3D Gated Recurrent Units (GRUs).

residual connections. The encoder output is then flattened and passed to a fully connected layer

which compresses the output into a 1024 dimensional feature vector.

2.3.2 Recurrence: 3D Convolutional LSTM

The core part of our 3D-R2N2 is a recurrence module that allows the network to retain what it

has seen and to update the memory when it sees a new image. A naive approach would be to use

a vanilla LSTM network. However, predicting such a large output space (32 × 32 × 32) would be

a very difficult task without any regularization. We propose a new architecture that we call 3D-

Convolutional LSTM (3D-LSTM). The network is made up of a set of structured LSTM units with

restricted connections. The 3D-LSTM units are spatially distributed in a 3D grid structure, with

each unit responsible for reconstructing a particular part of the final output (see Fig. 2.3(a)). Inside

the 3D grid, there are N × N × N 3D-LSTM units where N is the spatial resolution of the 3D-

LSTM grid. Each 3D-LSTM unit, indexed (i, j, k), has an independent hidden state ht,(i,j,k) ∈ RNh .

Following the same notation as in Section 2.2 but with ft, it, st, ht as 4D tensors (N ×N ×N vectors

of size Nh), the equations governing the 3D-LSTM grid are

ft = σ(WfT (xt) + Uf ∗ ht−1 + bf ) (2.9)

it = σ(WiT (xt) + Ui ∗ ht−1 + bi) (2.10)

st = ft � st−1 + it � tanh(WsT (xt) + Us ∗ ht−1 + bs) (2.11)

ht = tanh(st) (2.12)

We denote the convolution operation as ∗. In our implementation, we use N = 4. Unlike a

standard LSTM, we do not have output gates since we only extract the output at the end. By
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removing redundant output gates, we can reduce the number of parameters.

Intuitively, this configuration forces a 3D-LSTM unit to handle the mismatch between a particular

region of the predicted reconstruction and the ground truth model such that each unit learns to

reconstruct one part of the voxel space instead of contributing to the reconstruction of the entire

space. This configuration also endows the network with a sense of locality so that it can selectively

update its prediction about the previously occluded part of the object. We visualize such behavior

in the appendix.

Moreover, a 3D Convolutional LSTM unit restricts the connections of its hidden state to its

spatial neighbors. For vanilla LSTMs, all elements in the hidden layer ht−1 affect the current hidden

state ht, whereas a spatially structured 3D Convolutional LSTM only allows its hidden states ht,(i,j,k)

to be affected by its neighboring 3D-LSTM units for all i, j, and k. More specifically, the neighboring

connections are defined by the convolution kernel size. For instance, if we use a 3× 3× 3 kernel, an

LSTM unit is only affected by its immediate neighbors. This way, the units can share weights and

the network can be further regularized.

In Section 2.2, we also described the Gated Recurrent Unit (GRU) as a variation of the LSTM

unit. We created a variation of the 3D-Convolutional LSTM using Gated Recurrent Unit (GRU).

More formally, a GRU-based recurrence module can be expressed as

ut = σ(WfxT (xt) + Uf ∗ ht−1 + bf ) (2.13)

rt = σ(WixT (xt) + Ui ∗ ht−1 + bi) (2.14)

ht = (1− ut)� ht−1 + ut � tanh(WhT (xt) + Uh ∗ (rt � ht−1) + bh) (2.15)

2.3.3 Decoder: 3D Deconvolutional Neural Network

After receiving an input image sequence x1, x2, · · · , xT , the 3D-LSTM passes the hidden state hT to

a decoder, which increases the hidden state resolution by applying 3D convolutions, non-linearities,

and 3D unpooling [3] until it reaches the target output resolution.

As with the encoders, we propose a simple decoder network with 5 convolutions and a deep

residual version with 4 residual connections followed by a final convolution. After the last layer

where the activation reaches the target output resolution, we convert the final activation V ∈
RNvox×Nvox×Nvox×2 to the occupancy probability p(i,j,k) of the voxel cell at (i, j, k) using voxel-wise

softmax.

2.3.4 Loss: 3D Voxel-wise Softmax

The loss function of the network is defined as the sum of voxel-wise cross-entropy. Let the final output

at each voxel (i, j, k) be Bernoulli distributions [1− p(i,j,k), p(i,j,k)], where the dependency on input
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X = {xt}t∈{1,...,T} is omitted, and let the corresponding ground truth occupancy be y(i,j,k) ∈ {0, 1},
then

L(X , y) =
∑
i,j,k

y(i,j,k) log(p(i,j,k)) + (1− y(i,j,k)) log(1− p(i,j,k)) (2.16)

2.4 Implementation

Data augmentation: In training, we used 3D CAD models for generating input images and ground

truth voxel occupancy maps. We first rendered the CAD models with a transparent background

and then augmented the input images with random crops from the PASCAL VOC 2012 dataset [19].

Also, we tinted the color of the models and randomly translated the images. Note that all viewpoints

were sampled randomly.

Training: In training the network, we used variable length inputs ranging from one image to an

arbitrary number of images. More specifically, the input length (number of views) for each training

example within a single mini-batch was kept constant, but the input length of training examples

across different mini-batches varied randomly. This enabled the network to perform both single-

and multi-view reconstruction. During training, we computed the loss only at the end of an input

sequence in order to save both computational power and memory. On the other hand, during test

time we could access the intermediate reconstructions at each time step by extracting the hidden

states of the LSTM units.

Network: The input image size was set to 127× 127. The output voxelized reconstruction was of

size 32 × 32 × 32. The networks used in the experiments were trained for 60, 000 iterations with

a batch size of 36 except for [Res3D-GRU-3] (See Table 2.1), which needed a batch size of 24 to

fit in an NVIDIA Titan X GPU. For the LeakyReLU layers, the slope of the leak was set to 0.1

throughout the network. For deconvolution, we followed the unpooling scheme presented in [3].

We used Theano [8] to implement our network and used Adam [32] for the SGD update rule. We

initialized all weights except for LSTM weights using MSRA [27] and 0.1 for all biases. For LSTM

weights, we used SVD to decompose a random matrix and used an unitary matrix for initialization.

2.5 Experiments

In this section, we validate and demonstrate the capability of our approach with several experiments

using the datasets described in Section 2.5.1. First, we show the results of different variations of

the 3D-R2N2 (Section 2.5.2). Next, we compare the performance of our network on the PASCAL

3D [51] dataset with that of a state-of-the-art method by Kar et al. [30] for single-view real-world

image reconstruction (Section 2.5.3). Then we show the network’s ability to perform multi-view
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reconstruction on the ShapeNet dataset [13] and the Online Products dataset [46] (Section 2.5.4,

Section 2.5.5). Finally, we compare our approach with a Multi View Stereo method on reconstructing

objects with various texture levels and viewpoint sparsity (Section 2.5.6).

2.5.1 Dataset

ShapeNet: The ShapeNet dataset is a collection of 3D CAD models that are organized according to

the WordNet hierarchy. We used a subset of the ShapeNet dataset which consists of 50,000 models

and 13 major categories (see Table 2.5(c) for a complete list). We split the dataset into training and

testing sets, with 4/5 for training and the remaining 1/5 for testing. We refer to these two datasets

as the ShapeNet training set and testing set throughout the experiments section.

PASCAL 3D: The PASCAL 3D dataset is composed of PASCAL 2012 detection images augmented

with 3D CAD model alignment [51].

Online Products: The dataset [46] contains images of 23,000 items sold online. MVS and SFM

methods fail on these images due to ultra-wide baselines. Since the dataset does not have the

ground-truth 3D CAD models, we only used the dataset for qualitative evaluation.

MVS CAD Models: To compare our method with a Multi View Stereo method [2], we collected

4 different categories of high-quality CAD models. All CAD models have texture-rich surfaces and

were placed on top of a texture-rich paper to aid the camera localization of the MVS method.

Metrics: We used two metrics in evaluating the reconstruction quality. The primary metric was

the voxel Intersection-over-Union (IoU) between a 3D voxel reconstruction and its ground truth

voxelized model. More formally,

IoU =
∑
i,j,k

[
I(p(i,j,k) > t)I(y(i,j,k))

]
/
∑
i,j,k

[
I
(
I(p(i,j,k) > t) + I(y(i,j,k))

)]
(2.17)

where variables are defined in Section 2.3.4. I(·) is an indicator function and t is a voxelization

threshold. Higher IoU values indicate better reconstructions. We also report the cross-entropy loss

(Section 2.3.4) as a secondary metric. Lower loss values indicate higher confidence reconstructions.

2.5.2 Network Structures Comparison

We tested 5 variations of our 3D-R2N2 as described in Section 2.3. The first four networks are

based on the standard feed-forward CNN (top Fig. 2.2) and the fifth network is the residual network

(bottom Fig. 2.2). For the first four networks, we used either GRU or LSTM units and and varied

the convolution kernel to be either 1×1×1 [3D-LSTM/GRU-3] or 3×3×3 [3D-LSTM/GRU-3]. The

residual network used GRU units and 3× 3× 3 convolutions [Res3D-GRU-3]. These networks were

trained on the ShapeNet training set and tested on the ShapeNet testing set. We used 5 views in the



CHAPTER 2. SUPERVISED RECONSTRUCTION 17

experiment. Table 2.1 shows the results. We observe that 1) the GRU-based networks outperform

the LSTM-based networks, 2) that the networks with neighboring recurrent unit connections (3×3×3

convolutions) outperform the networks that have no neighboring recurrent unit connection (1×1×1

convolutions), and 3) that the deep residual network variation further boosts the reconstruction

performance.

Table 2.1: Reconstruction performance of 3D-LSTM variations according to cross-entropy loss and
IoU using 5 views.

Encoder Recurrence Decoder Loss IoU
3D-LSTM-1 simple LSTM simple 0.116 0.499
3D-GRU-1 simple GRU simple 0.105 0.540

3D-LSTM-3 simple LSTM simple 0.106 0.539
3D-GRU-3 simple GRU simple 0.091 0.592

Res3D-GRU-3 residual GRU residual 0.080 0.634

Input Ground Truth Ours Kar et al. [30] Input Ground Truth Ours Kar et al. [30]

(a)

Input Ground Truth Ours Kar et al. [30] Input Ground Truth Ours Kar et al. [30]

(b)

Figure 2.4: (a) Reconstruction samples of PASCAL VOC dataset. (b) Failed reconstructions on
the PASCAL VOC dataset. Note that Kar et al. [30] is trained/tested per category and takes
ground-truth object segmentation masks and keypoint labels as additional input.
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2.5.3 Single Real-World Image Reconstruction

We evaluated the performance of our network in single-view reconstruction using real-world images,

comparing the performance with that of a recent method by Kar et al. [30]. To make a quantitative

comparison, we used images from the PASCAL VOC 2012 dataset [19] and its corresponding 3D

models from the PASCAL 3D+ dataset [51]. We ran the experiments with the same configuration

as Kar et al. except that we allow the Kar et al. method to have ground-truth object segmentation

masks and keypoint labels as additional inputs for both training and testing.

Training. We fine-tuned a network trained on the ShapeNet dataset with PASCAL 3D+. We

used the PASCAL 3D+ validation set to find hyperparameters such as the number of fine-tuning

iterations and the voxelization threshold.

Results. As shown in Table 2.2, our approach outperforms the method of Kar et al. [30] in

every category. However, we observe that our network has some difficulties reconstructing thin

legs of chairs. Moreover, the network often confuses thin flat panels with thick CRT screens when

given a frontal view of the monitor. Yet, our approach demonstrates a competitive quantitative

performance. For the qualitative results and comparisons, please see Fig. 2.4.

Aside from better performance, our network has several advantages over Kar et al. [30]. First, we

do not need to train and test per-category. Our network trains and reconstructs without knowing

the object category. Second, our network does not require object segmentation masks and keypoint

labels as additional inputs. Kar et al. does demonstrate the possibility of testing on a wild unlabeled

image by estimating the segmentation and keypoints. However, our network outperforms their

method tested with ground truth labels.

2.5.4 Multi-view Reconstruction Evaluation

In this section, we report a quantitative evaluation of our network’s performance in multi-view

reconstruction on the ShapeNet testing set.

Experiment setup. We used the [Res3D-GRU-3] network in this experiment. We evaluated

the network with the ShapeNet testing set. The testing set consisted of 8725 models in 13 major

categories. We rendered five random views for each model, and we applied a uniform colored

Table 2.2: Per-category reconstruction of PASCAL VOC compared using voxel Intersection-over-
Union (IoU). Note that the experiments were ran with the same configuration except that the method
of Kar et al. [30] took ground-truth object segmentation masks and keypoint labels as additional
inputs for both training and testing.

aero bike boat bus car chair mbike sofa train tv mean
Kar et al. [30] 0.298 0.144 0.188 0.501 0.472 0.234 0.361 0.149 0.249 0.492 0.318
ours [LSTM-1] 0.472 0.330 0.466 0.677 0.579 0.203 0.474 0.251 0.518 0.438 0.456

ours [Res3D-GRU-3] 0.544 0.499 0.560 0.816 0.699 0.280 0.649 0.332 0.672 0.574 0.571
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(a) Cross entropy loss (b) Voxel IoU

# views 1 2 3 4 5

plane 0.513 0.536 0.549 0.556 0.561
bench 0.421 0.484 0.502 0.516 0.527
cabinet 0.716 0.746 0.763 0.767 0.772

car 0.798 0.821 0.829 0.833 0.836
chair 0.466 0.515 0.533 0.541 0.550

monitor 0.468 0.527 0.545 0.558 0.565
lamp 0.381 0.406 0.415 0.416 0.421

speaker 0.662 0.696 0.708 0.714 0.717
firearm 0.544 0.582 0.593 0.595 0.600
couch 0.628 0.677 0.690 0.698 0.706
table 0.513 0.550 0.564 0.573 0.580

cellphone 0.661 0.717 0.732 0.738 0.754
watercraft 0.513 0.576 0.596 0.604 0.610

(c) Per-category IoU

Figure 2.5: (a), (b): Multi-view reconstruction using our model on the ShapeNet dataset. The
performance is reported in median (red line) and mean (green dot) cross-entropy loss and intersection
over union (IoU) values. The box plot shows 25% and 75%, with caps showing 15% and 85%. (c):
Per-category reconstruction of the ShapeNet dataset using our model. The values are average IoU.

background to the image. We report both softmax loss and intersection over union(IoU) with a

voxelization threshold of 0.4 between the predicted and the ground truth voxel models.

Overall results. We first investigate the quality of the reconstructed models under different

numbers of views. Fig. 2.5(a) and (b) show that reconstruction quality improves as the number of

views increases. The fact that the marginal gain decreases accords with our assumption that each

additional view provides less information since two random views are very likely to have partial

overlap.

Per-category results. We also report the reconstruction IoUs on each of the 13 major cat-

egories in the testing set in Table 2.5. We observed that the reconstruction quality improved for

every category as the number of views increased, but the quality varied depending on the category.

Cabinets, cars, and speakers had the highest reconstruction performance since the objects are bulky-

shaped and have less (shape) variance compared to other classes. The network performed worse on

the lamp, bench, and table categories. These classes have much higher shape variation than the

other classes. For example, a lamp can have a slim arm or a large lampshade which may move

around, and chairs and tables have various types of supporting structures.

Qualitative results. Fig. 2.6(a) shows some sample reconstructions from the ShapeNet testing

set. One exemplary instance is the truck shown in row 2. In the initial view, only the front part of

the truck is visible. The network took the safest guess that the object is a sedan, which is the most

common shape in the car category. Then the network produced a more accurate reconstruction of

the truck after seeing more views. All other instances show similar improvements as the network

sees more views of the objects. Fig. 2.6(b) shows two failure cases.
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(a)

(b)

Figure 2.6: Sample reconstructions on (a) the ShapeNet [13] test set. Top rows are input image
sequences (from left to right). Bottom rows are the reconstructions at each time step. (b): Failure
cases on each dataset.

2.5.5 Reconstructing Real World Images

In this experiment, we tested our network on the Online Products dataset for qualitative evaluation.

Images that were not square-shaped were padded with white pixels.

Fig. 2.6(c) shows some sample reconstructions. The result shows that the network is capable of

reconstructing real world objects using only synthetic data as training samples. It also demonstrates

that the network improves the reconstructions after seeing additional views of the objects. One

exemplary instance is the reconstruction of couch as shown in row 1. The initial side view of the

couch led the network to believe that it was a one-seater sofa, but after seeing the front of the couch,

the network immediately refined its reconstruction to reflect the observation. Similar behaviors are

also shown in other samples. Some failure cases are shown in Fig.2.6(d).

2.5.6 Multi View Stereo(MVS) vs. 3D-R2N2

In this experiment, we compare our approach with a MVS method on reconstructing objects that

are of various texture levels with different number of views. MVS methods are limited by the
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(c)

(d)

Figure 2.7: Sample reconstructions on (c) the Online Products dataset [46]. Top rows are input
image sequences (from left to right). Bottom rows are the reconstructions at each time step. (d):
Failure cases.
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Figure 2.8: Reconstruction performance of MVS [1] compared with that of our network. (a) shows
how texture strengths affect the reconstructions of MVS and our network, averaged over 20, 30, 40,
and 50 input views of all classes. (b) compares the quality of the reconstruction across the number
of input images, averaged over all texture levels of all classes.

accuracy of feature correspondences across different views. Therefore, they tend to fail reconstructing

textureless objects or images from sparsely positioned camera viewpoints. In contrast, our method

does not require accurate feature correspondences or adjacent camera viewpoints. Please refer to

the supplementary material for the detailed experiment setup.

Results. The results are shown in Fig. 2.8 and Fig. 2.9. We observed 1) that our model worked

with as few as one view, whereas the MVS method failed completely when the number of views

was less than 20 (IoU=0), and 2) that our model worked regardless of the objects’ texture level,

whereas the MVS method frequently failed to reconstruct objects that had low texture level even

when a large number of views were provided. This shows that our method works in situations where

MVS methods would perform poorly or completely fail. Note that the reconstruction performance

of our method decreased after the number of views passed 24. This is because we only fine-tuned

our network on samples with a maximum of 24 views. Also, our method could not reconstruct as

many details as the MVS method did when given more than 30 different views of the model, since

3D-R2N2 used 127× 127 resolution images (compared to 640× 480) and a low resolution voxel grid.

However, a larger network could easily overcome such limitation. Finally, our method performed

worse in reconstructing objects with high texture levels. This is largely because most models in the

ShapeNet training set have low texture level.

2.6 Conclusion

In this work, we proposed a novel architecture that unifies single- and multi-view 3D reconstruction

into a single framework. Even though our network can take variable length inputs, we demonstrated

that it outperforms the method of Kar et al. [30] in single-view reconstruction using real-world im-

ages. We further tested the network’s ability to perform multi-view reconstruction on the ShapeNet

dataset [13] and the Online Products dataset [46], which showed that the network is able to incre-

mentally improve its reconstructions as it sees more views of an object. Lastly, we analyzed the
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: (a-c) show the reconstruction result of MVS and (d-f) show the reconstruction results
from our method [Res3D-GRU-3] on a high-texture airplane model with 20, 30, and 40 input views
respectively.

network’s performance on multi-view reconstruction, finding that our method can produce accurate

reconstructions when techniques such as MVS fail. In summary, our network does not require a min-

imum number of input images in order to produce a plausible reconstruction and is able to overcome

past challenges of dealing with images which have insufficient texture or wide baseline viewpoints.
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