
Chapter 4

Sparse Tensors Networks

4.1 Introduction

Compressing a neural network to speedup inference and minimize memory footprint has been studied

widely. One of the popular techniques for model compression is pruning the weights in convnets, is

also known as sparse convolutional networks [9, 11]. Such parameter-space sparsity used for model

compression compresses networks that operate on dense tensors and all intermediate activations of

these networks are also dense tensors.

However, there is another type of sparsity that is widely used for high-dimensional data: spatial

sparsity. Natural language and images tend to occupy the spatial dimensions of the modality densely,

but in 3-dimensional scans or higher-dimensional statistical data, the data occupy a small portion

of the space and are sparse. For example, in Fig. 4.1, we visualize an example 3D scan of a hotel

room from the ScanNet dataset [4] with various quantization step sizes. As we increase the spatial

resolution or decrease the quantization step size, the sparsity of the volume decreases rapidly.

Voxel size 20cm Voxel size 10cm Voxel size 5cm Voxel size 2.5cm

Sparsity 18% Sparsity 9% Sparsity 4.5% Sparsity 1.8%

Figure 4.1: The sparsity ratios of a 3D scan with varying quantization size. As we increase the
spatial resolution of the space, the sparsity of the data decreases rapidly.

49



CHAPTER 4. SPARSE TENSORS NETWORKS 50

Such spatially sparse data are commonly used to represent 3D point clouds or meshes as 3D

reconstructions from images or scans from Time-of-Flight scanners generate an unstructured set of

points in the 3D space. Likewise, the majority of machine learning problems and statistical data are

defined in a high-dimensional space and occupy an extremely small portion of the space. Thus, as

we increase the spatial resolution or the dimension of the space, the sparsity of the data decreases

rapidly and representing such sparsity is the key component that allows efficient learning.

One of the first families of neural networks that process such spatially sparse data is spatially-

sparse convolutional neural networks [5, 8, 2, 3], some of the spatially-sparse networks take spatially

sparse tensors and some of the intermediate activations are sparse tensors as well.

We define such neural networks specialized for spatially sparse tensors as sparse tensor net-

works; sparse tensor networks take a sparse tensor as input, process, and generate sparse tensors as

activations and output. To construct a sparse tensor network, we build all standard neural network

layers such as MLPs, non-linearities, convolution, normalizations, pooling operations in the same

way we define them on a dense tensor and implemented in the Minkowski Engine [2].

4.2 Sparse Tensor Networks

In this section, we delineate the general operation pipeline of sparse tensor networks and some

common layers and terminologies used for sparse tensor networks. Also, we formally define convolu-

tion layers, pooling layers, normalization layers, and non-linearities used in sparse tensor networks.

These operations are derived from the same counterparts in a conventional neural network, and

work similarly, but one of the major differences between sparse tensor networks and conventional

networks is the sparsity management. In dense tensors, random access on an arbitrary element is

easy to implement, but in sparse tensors, random access requires a relatively complex data structure

such as a hash-table or KD-tree. Thus, searching neighboring points required for convolution and

max-pooling becomes a non-trivial operation that requires managing data structures for sparsity

patterns and tracking neighbors between them.

4.2.1 Terms

First, we cover some terms in sparse tensor networks and introduce basic operations that are critical

for the generative sparse tensor network. Throughout the section, we will use lowercase letters for

variable scalars, t; uppercase letters for constants, N ; lowercase bold letters for vectors, v; uppercase

bold letters for matrices, R; Euler scripts for tensors, T; and calligraphic symbols for sets, C. We

denote i-th row and j-th column element of a matrix A as A[i, j] and the i-th row-slice as A[i, :].
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Sparse Tensor

A tensor is a multi-dimensional array that represents high-order data. AD-th order tensor T requires

D indices to uniquely access its element and we denote such indices or a coordinate as [x1, ..., xD]

and the element as T [x1, ..., xD] similar to how we access components in a matrix. Likewise, a sparse

tensor is a high-dimensional extension of a sparse matrix where the majority of the elements are 0

T[x1
i , x

2
i , · · · , xDi ] =

fi if (x1
i , x

2
i , · · · , xDi ) ∈ C

0 otherwise
(4.1)

where C is the set of coordinates where we have non-zero values and fi is the non-zero value at i-th

coordinate xi = [x1
i , x

2
i , · · · , xDi ]T .

We can represent the above sparse tensor compactly with two matrices: one for coordinates of

non-zero values and another matrix for the non-zero values f . This representation is simply row-

wise concatenation of the coordinates C = [x1,x2, ...,xN ]T and values F = [f1, f2, ..., fN ]T and is

also known as the COOrdinate list (COO) format [12].

C =


x1

1 x2
1 · · · xD1

...
...

. . .
...

x1
N x2

N · · · xDN

 , F =


fT1
...

fTN

 (4.2)

In sum, a sparse tensor is a multi-dimensional array whose majority of elements are 0. The COO

representation of a sparse tensor uses a set of coordinates C or equivalently a coordinate matrix

C ∈ ZN×D and associated features F or a feature matrix F ∈ RN×NF to represent the sparse

tensor, where N is the number of non-zero elements within a sparse tensor, D is the dimension of

the space, and NF is the number of channels. We will use the COO representation to represent a

sparse tensor throughout the chapter.

Tensor Stride

Receptive field size of a neuron is defined as the maximum distance along one axis between pixels in

the input (image) that the neuron in a layer can see. For example, if we process an image with two

convolution layers with kernel size 3 and stride 2, the receptive field size after the first convolution

layer is 3; and the receptive field size after the second convolution layer is 7. This is due to the fact

that the second convolution layer sees the feature map that subsamples the image with the factor

of 2 or stride 2. Here, the stride refers to the distance between neurons. The feature map after the

first convolution has the stride size 2 and that after the second convolution has the stride size 4.

Similarly, if we use transposed convolutions (deconv, upconv), we reduce the stride.

We define a tensor stride to be the high-dimensional counterpart of these 2-dimensional strides
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in the above example. When we use pooling or convolution layers with stride greater than 1, the

tensor stride of the output feature map increases by the factor of the stride of the layer.

Kernel Map

A sparse tensor consists of a set of coordinates C ∈ ZN×D and associated features F ∈ RN×NF

where N is the number of non-zero elements within a sparse tensor, D is the dimension of the space,

and NF is the number of channels. To find how a sparse tensor is mapped to another sparse tensor

using spatially local operations such as convolution or pooling, we need to find which coordinate in

the input sparse tensor is mapped to which coordinate in the output sparse tensor.

We call this mapping from an input sparse tensor to an output sparse tensor a kernel map. For

example, a 2D convolution with kernel size 3 has a 3 × 3 convolution kernel, which consists of 9

weight matrices. Some input coordinates are mapped to corresponding output coordinates with each

kernel. We represent a map as a pair of lists of integers: the in map I and the out map O. An

integer in an in map i ∈ I indicates the row index of the coordinate matrix or the feature matrix of

an input sparse tensor. Similarly, an integer in the out map o ∈ O also indicates the row index of

the coordinate matrix of an output sparse tensor. The integers in the lists are ordered in a way that

k-th element ik in the in map corresponds to the k-th element ok of the out map. In sum, (I→ O)

defines how the row indices of input feature FI maps to the row indices of output feature FO.

Since a single kernel map defines a map for one specific cell of a convolution kernel, a convolution

requires multiple kernel maps. In the case of a 3 × 3 convolution in this example, we need 9 maps

to define a complete kernel map.
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Figure 4.2: An example kernel map for 3× 3 convolution kernel. The 0-th input coordinate will be
mapped to 0-th output coordinate through kernel I, I: 0 → 0. Similarly, B: 1 → 0, B: 0 → 2, D:
3→ 1 and H: 2→ 3.
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4.2.2 Sparse Tensor Network Layers

A sparse tensor network consists of layers that take a sparse tensor as input and returns a sparse

tensor as output. We formally define some of the most commonly used layers in this section.

Generalized Convolution

Conventional convolutions used in image processing, speech, and machine translation, are discrete

convolution where the input and output are discrete dense tensors. Let f in
u ∈ RN in

be an input

feature with N in channels in a D-dimensional discrete space located at u ∈ ZD (a D-dimensional

coordinate), and convolution kernel weights be W ∈ RKD×Nout×N in

where K is the kernel size. We

break down the weights into KD matrices and denote them as Wi ∈ Nout ×N in for i ∈ VD(K) and

‖VD(K)‖ = KD. We can summarize the conventional dense convolution in D-dimension as

fout
u =

∑
i∈VD(K)

Wif
in
u+i for u ∈ ZD, (4.3)

where VD(K) is the list of offsets in a D-dimensional hypercube centered at the origin. e.g. V1(3) =

{−1, 0, 1}.
A sparse tensor network uses sparse tensors as input and activations. We propose a general-

ized convolution that encompasses the conventional convolution as well as convolution on sparse

tensors [6, 7]. Specifically, we generalize convolution to incorporate generic input and output coor-

dinates and arbitrary kernel shapes. The generic input and output coordinates allow the generalized

convolution to cover the dense convolution in Eq. 4.3 as well as the convolution on sparse tensors. In

addition, it allows the network to handle asks that require generating coordinates dynamically such

as 3D reconstruction and completion. Mathematically, we represent the generalized convolution as

fout
u =

∑
i∈ND(u)∩Cin

Wif
in
u+i for u ∈ Cout (4.4)

where ND indicates the set of offsets that defines the shape of the convolution kernel. Specifically,

ND(u) ∩ Cin is the intersection of the kernel offsets from the current point u with the input coor-

dinates Cin. Cin and Cout are predefined input and output coordinates. Note that first, Cout can be

generated dynamically which is crucial for generative tasks. Second, the output coordinates can be

defined arbitrarily independent of input coordinates. Third, the shape of the convolution kernel can

be defined arbitrarily ND.
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Convolution on a Dense Tensor
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Convolution on a Sparse Tensor

Figure 4.3: Schematics of convolution on a dense tensor (top) and a sparse tensor (bottom).

Max Pooling and Global Pooling

Max pooling layer selects the maximum element within a region for each channel. For a sparse

tensor input, we define it as

fout
u,i = max

k∈ND(u)∩Cin
f in
u+k,i (4.5)

where fu,i indicates the i-th channel feature value at u. The region to pool features from is defined as

ND(u)∩Cin. The global pooling is similar to Eq. 4.5 except that we pool features from all non-zero

elements in the sparse tensor.

fout
i = max

k∈Cin
f in
u+k,i (4.6)
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Normalization

First, instance normalization computes batch-wise statistics and whiten features batch wise. The

mean and standard deviations are

µb =
1

|Cin
b |

∑
k∈Cinb

f in
u,b (4.7)

σ2
bi =

1

|Cin
b |

∑
u∈Cinb

(f in
u,bi − µbi)2 (4.8)

where fu,bi indicates the i-th channel feature at the coordinate u with batch index b. Cin
b is the set

of non-zero element coordinates in the b-th batch. µb indicates the b-th batch batch-wise feature

mean and σbi is the i-th feature channel standard deviation of the b-th batch.

fout
u,bi =

f in
u,bi − µbi√
σ2
bi + ε

(4.9)

Batch normalization is similar to the instance normalization except that it computes statistics for

all batch.

µ =
1

|Cin|
∑
k∈Cin

f in
u (4.10)

σ2
i =

1

|Cin|
∑
u∈Cin

(f in
u,i − µi)2 (4.11)

fout
u,i =

f in
u,i − µi√
σ2
i + ε

(4.12)

Non-linearity Layers

Most of the commonly used non-linearity functions are applied independently element-wise. Thus,

an element wise function f(·) can be a rectified-linear function (ReLU), leaky ReLU, ELU, SELU,

etc.

fout
u,i = f(f in

u,i) for u ∈ C (4.13)

4.3 Implementation

A sparse tensor network requires specialized functions to manage the unstructured coordinates of

non-zero elements. For example, spatial operations such as convolution and max pooling require 1.

generating a new set of coordinates if we use stride > 1 and 2. finding neighbors for all coordinates.

In a conventional neural network, random access to arbitrary coordinates requires simply computing

the offset from the 0-th element. However, a sparse tensor requires a special data structure to speed
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up the random access and searching neighbors. We use a hash table to manage the coordinates of

non-zero elements. A hash table allows random access to arbitrary coordinates, but requires extra

overhead to compute a hash key and to manage hash key collision.

We delegate all functions associated with creating and searching coordinates to a coordinate

manager. Internally, the coordinate manager uses a set of hash tables to track the coordinates

4.3.1 Coordinate Manager

A coordinate manager generates a new sparse tensor and finds neighbors among coordinates of non-

zero elements. Also, once we create a new set of coordinates, the coordinate manager caches the

coordinates and the neighborhood search results these are reused very frequently. For example, in

many conventional neural networks, we repeat the same operations in series multiple times such

as multiple residual blocks in a ResNet or a DenseNet. Thus, instead of recomputing the same

coordinates and same kernel maps, a coordinate manager caches all these results and reuses if it

detects the same operation that is in the dictionary is called.

Sparse Tensor Generation

The first step that converts unstructured data into a sparse tensor is discretization. Let continuous

coordinates of the data be C = {xi}Ni=1, the user-defined quantization size be s. We compute the

discretized coordinate for all elements in C by dividing the coordinate by s and flooring it to get the

integer coordinates bx/sc.
We use a hash table to store the discretized coordinates and use a D-dimensional integer coor-

dinate as the key of the table and use the row index of the coordinate as the value. We use a hash

function based on the Murmur hash [1] that sequentially processes all bytes (4 bytes for an integer)

of D integers in a coordinate for this hash table.

When there is a coordinate collision, we simply ignore the coordinates that are inserted after the

first insertion. However, for 3D perception tasks, we did not see any performance degradation when

the quantization size is less than 5cm.

Coordinate Key

Within a coordinate manager, all objects are cached using an unordered map. A coordinate key is a

hash key for the unordered map that caches the coordinates of sparse tensors. If two sparse tensors

have the same coordinate manager and the same coordinate key, then the coordinates of the sparse

tensors are identical and they share the same memory space.
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Kernel Map

A kernel map is a pair of coordinate indices that aligns input features to corresponding output

features. Specifically, this is an operation that is equivalent to Im2Col in a conventional neural net-

work. We simply iterate over all neighbors defined by N (u) in Eq. 4.4 to search existing coordinates

ND(u)∩Cin. As this search operation can be run independently from each other, we parallelize the

kernel map generation with OpenMP [10].

Input Dense Tensor Im2col( ) Matrix Multiplication Output Dense Tensor

Input Sparse Tensor Kernel Map Matrix Multiplication Output Sparse Tensor

Figure 4.4: Comparison between (top) the convolution on a dense tensor and (bottom) the convo-
lution on a sparse tensor.

4.4 Example Sparse Tensor Network Architectures

We present common sparse tensor network architectures that are widely used for 3D perception in

this section. One advantage of generative convolution is that it supports arbitrary and dynamically

generated coordinates. Thus it allows us to solve interesting generative tasks such as 3D object

completion or 3D shape generation from a feature vector. We visualize generic network architectures,

so specific architectures used for each task can be extensions of these proposed models.

4.4.1 Standard Sparse Tensor Networks

Image classification, semantic segmentation, and object detection have been studied widely and

the network architecture used for these tasks are variations of basic networks. We present a few 3D

sparse tensor networks for these standard tasks. First, a classification network uses a series of strided

convolution and pooling to map an input into a feature vector and then to logit scores. A sparse

tensor network in Fig. 4.5 also uses a series of strided convolutions and pooling layers to replicate the

same architecture on a sparse tensor. We also use residual blocks to replicate the high-dimensional

variants of residual networks on a sparse tensor. An example implementation and training of the

network is available online.1

Similarly, we propose a semantic segmentation network in Fig. 4.6 and a single-shot object

detection network in Fig. 4.7. These networks are variations of encoder-decoder style architectures

widely used for semantic segmentation and sometimes referred to as pyramid networks or U-networks.

1“https://github.com/StanfordVL/MinkowskiEngine/tree/master/examples
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Figure 4.5: Classification Sparse Tensor Network
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Figure 4.6: Semantic Segmentation Sparse Tensor Network
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Figure 4.7: Object Detection Sparse Tensor Network

4.4.2 Generative Sparse Tensor Networks

3D generation tasks include completion and reconstruction. First, a shape completion network infers

a complete unaltered data or a complete 3D shape from a partial observation or scan of a 3D shape.

A 3D reconstruction network also generates 3D shapes as an output, but unlike the completion

network, it takes a low-dimensional feature as an input. This feature can be simply a global feature

from an image or a one-hot vector indicating a 3D model index.

Both networks use generalized transposed convolution as the key component that upsamples

a low-resolution sparse tensor into a high-resolution sparse tensor. The generalized transposed
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convolution allows the network to dynamically generate new coordinates based on the input, rather

than statically generating coordinates beforehand. After the transposed convolution, each non-zero

element in the output sparse tensor predicts the likelihood that the current element should be kept or

not. The pruning layer then removes the coordinates whose likelihoods are lower than a predefined

threshold. We visualize the transposed convolution and pruning pipeline in Fig. 4.8. Note that a

generative sparse tensor network consists of multiple blocks of a transposed convolution and pruning

pipeline.
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Figure 4.8: Upsampling using transposed convolution and pruning

We present a completion network architecture in Fig. 4.9 and a training script.2
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Figure 4.9: Completion Sparse Tensor Network

Similarly, a 3D reconstruction network also generates a 3D shape as an output, but unlike the

completion network, it generates a 3D shape from a feature vector. We visualize an example network

architecture in Fig. 4.10 and a training scrip.3

2“https://github.com/StanfordVL/MinkowskiEngine/blob/master/examples/completion.py
3“https://github.com/StanfordVL/MinkowskiEngine/blob/master/examples/reconstruction.py
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Figure 4.10: Generative Sparse Tensor Network
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