
Chapter 5

Spatio Temporal Segmentation

5.1 Introduction

In this work, we are interested in 3D-video perception. A 3D-video is a temporal sequence of 3D

scans such as a video from a depth camera, a sequence of LIDAR scans, or a multiple MRI scans

of the same object or a body part (Fig. 5.1). As LIDAR scanners and depth cameras become more

affordable and widely used for robotics applications, 3D-videos became readily-available sources of

input for robotics systems or AR/VR applications.

However, there are many technical challenges in using 3D-videos for high-level perception tasks.

First, 3D data requires heterogeneous representations and processing those either alienates users or

makes it difficult to integrate into larger systems. Second, the performance of the 3D convolutional

neural networks is worse or on-par with 2D convolutional neural networks. Third, there are limited

number of open-source libraries for fast large-scale 3D data.

To resolve most, if not all, of the challenges in the high-dimensional perception, we adopt a sparse

tensor [9, 10] for our problem and propose the generalized convolutions. The generalized convolution

encompasses all discrete convolutions as its subclasses and is crucial for high-dimensional perception.

We implement the generalized convolution and all standard neural network functions in Sec. 5.4 and

open-source the library.

We adopt the sparse representation for several reasons. Currently, there are various concurrent

works for 3D perception: a dense 3D convolution [6], pointnet-variants [24, 25], continuous convo-

lutions [12, 17], surface convolutions [22, 31], and an octree convolution [26]. Out of these represen-

tations, we chose a sparse tensor due to its expressiveness and generalizability for high-dimensional

spaces. Also, it allows homogeneous data representation within traditional neural network libraries

since most of them support sparse tensors.

Second, the generalized convolution closely resembles the standard convolution (Sec. 5.3) which

is proven to be successful in 2D perception as well as 3D reconstruction [5], feature learning [37],

62

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 63

Figure 5.1: An example of 3D video: 3D scenes at different time steps. Best viewed on display.

1D: Line 2D: Square 3D: Cube 4D: Tesseract

Figure 5.2: 2D projections of hypercubes in various dimensions

and semantic segmentation [32].

Third, the generalized convolution is efficient and fast. It only computes outputs for predefined

coordinates and saves them into a compact sparse tensor (Sec. 5.3). It saves both memory and

computation especially for 3D scans or high-dimensional data where most of the space is empty.

Thus, we adopt the sparse representation for the our problem and create the first large-scale

3D/4D networks or Minkowski networks. We named them after the space-time continuum, Minkowski

space, in Physics.

However, even with the efficient representation, merely scaling the 3D convolution to high-

dimensional spaces results in significant computational overhead and memory consumption due

to the curse of dimensionality. A 2D convolution with kernel size 5 requires 52 = 25 weights which

increases exponentially to 53 = 125 in a 3D cube, and 625 in a 4D tesseract (Fig. 5.2). This exponen-

tial increase, however, does not necessarily lead to better performance and slows down the network

significantly. To overcome this challenge, we propose custom kernels with non-(hyper)-cubic shapes

using the generalized convolution.

Finally, the predictions from the 4D spatio-temporal generalized sparse convnets are not necessar-

ily consistent throughout the space and time. To enforce consistency, we propose high-dimensional

conditional random fields defined in a 7D trilateral space (space-time-color) with a stationary pair-

wise consistency function. We use variational inference to convert the conditional random field to

differentiable recurrent layers which can be implemented in as a 7D generalized sparse convnet and

train both the 4D and 7D networks end-to-end.

Experimentally, we use various 3D benchmarks that cover both indoor [6, 2] and outdoor

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 64

spaces [29, 27]. First, we show that networks with only generalized sparse 3D conv nets can out-

perform 2D or hybrid deep-learning algorithms by a large margin. Also, we create 4D datasets

from Synthia [29] and Varcity [27] and report ablation studies of temporal components. Experi-

mentally, we show that the generalized sparse conv nets with the hybrid kernel outperform sparse

convnets with tesseract kernels. Also, the 4D generalized sparse convnets are more robust to noise

and sometimes more efficient in some cases than the 3D counterpart.

5.2 Related Work

The 4D spatio-temporal perception fundamentally requires 3D perception as a slice of 4D along the

temporal dimension is a 3D scan. However, as there are no previous works on 4D perception using

neural networks, we will primarily cover 3D perception, specifically 3D segmentation using neural

networks. We categorized all previous works in 3D as either (a) 3D-convolutional neural networks

or (b) neural networks without 3D convolutions. Finally, we cover early 4D perception methods.

Although 2D videos are spatio-temporal data, we will not cover them in this paper as 3D perception

requires radically different data processing, implementation, and architectures.

3D-convolutional neural networks. The first branch of 3D-convolutional neural networks

uses a rectangular grid and a dense representation [32, 6] where the empty space is represented

either as 0 or the signed distance function. This straightforward representation is intuitive and is

supported by all major public neural network libraries. However, as the most space in 3D scans is

empty, it suffers from high memory consumption and slow computation. To resolve this, OctNet [26]

proposed to use the Octree structure to represent 3D space and convolution on it.

The second branch is sparse 3D-convolutional neural networks [30, 10]. There are two quanti-

zation methods used for high dimensions: a rectangular grid and a permutohedral lattice [1]. [30]

used a permutohedral lattice whereas [10] used a rectangular grid for 3D classification and semantic

segmentation.

The third branch is 3D continuous convolutional neural networks [12, 17, 34]. Unlike the previous

works, these works define convolutions using continuous kernels or a set of basis functions in the

continuous space. As it uses a fixed number of basis or points and as each basis function can scale

arbitrarily large to cover the neighborhood of data points, the number of parameters required for

these network can be smaller than that of discrete convolutions. However, finding neighbors in a

continuous space can be expensive and are susceptible to uneven distribution of point clouds.

The last branch of continuous convolution is based on graph neural networks [13, 16, 35, 4]. Some

graph neural networks pool features from neighbors after a linear transformation to the neighboring

features [13]. Others augment the weights in the linear transformation with the positions of the

points to represent the spatiality of the transformation [35]. However, the structure of the transfor-

mation embed the inductive bias to the transformation or pooling and limit the family of functions

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 65

these network can approximate or introduces numerical inaccuracies. Another approach uses the

graph Laplacian or spectral decomposition to represent general convolutions [4]. However, spectral

decomposition requires repeated matrix decomposition which introduces numerical instabilities.

Neural networks without 3D convolutions. Recently, we saw a tremendous increase in

neural networks without 3D convolutions for 3D perception. Since 3D scans consist of thin observable

surfaces, [22, 31] proposed to use 2D convolutions on the surface for semantic segmentation.

Another branch of 3D perception without convolution is PointNet-based methods [24, 25]. Point-

Nets consist of a series of multi-layer perceptrons followed by a global pooling layer. It uses a set of

input coordinates as features and . However, this approach processes a constant number of points

and the location these point are extract affects the thus a sliding window for cropping out a section

from an input was used for large spaces making the receptive field size rather limited. [16] tried to

resolve such shortcomings with a recurrent network on top of multiple pointnets, and [17] proposed a

variant of 3D continuous convolution for lower layers of a PointNet and got a significant performance

boost.

4D perception. The first 4D perception algorithm [20] proposed a dynamic deformable balloon

model for 4D cardiac image analysis. Later, [18] used a 4D Markov Random Fields for cardiac seg-

mentation. Recently, a ”Spatio-Temporal CNN” [38] combined a 3D-UNet with a 1D-AutoEncoder

for temporal data and applied the model for auto-encoding brain fMRI images, but it is not a

4D-convolutional neural network.

In this paper, we propose the first high-dimensional convolutional neural networks for 4D spatio-

temporal data, or 3D videos and the 7D space-time-chroma space. Compared with other approaches

that combine temporal data with a recurrent neural network or a shallow model (CRF), our networks

use a homogeneous representation and convolutions consistently throughout the networks. Instead

of using an RNN, we use convolution for the temporal axis since it is proven to be more effective in

sequence modeling [3].

5.3 Sparse Tensor and Convolution

In traditional speech, text, or image data, features are extracted densely. Thus, the most common

representations of these data are vectors, matrices, and tensors. However, for 3-dimensional scans

or even higher-dimensional spaces, such dense representations are inefficient due to the sparsity.

Instead, we can only save the non-empty part of the space as its coordinates and the associated

features. This representation is an N-dimensional extension of a sparse matrix; thus it is known as

a sparse tensor. There are many ways to save such sparse tensors compactly [33], but we follow the

COO format as it is efficient for neighborhood queries (Sec. 5.3.1). Unlike the traditional sparse

tensors, we augment the sparse tensor coordinates with the batch indices to distinguish points

that occupy the same coordinate in different batches [10]. Concisely, we can represent a set of 4D

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 66

coordinates as C = {(xi, yi, zi, ti)}i or as a matrix C and a set of associated features F = {fi}i or as

a matrix F . Then, a sparse tensor can be written as

C =

x1 y1 z1 t1

...

xN yN zN tN

 , F =

fT1
...

fTN

 (5.1)

where fi is the feature associated to the i-th coordinate. In Sec. 5.6, we augment the 4D space with

the 3D chromatic space and create a 7D sparse tensor for trilateral filtering.

5.3.1 Generalized Convolution

In this section, we generalize the sparse convolution [9, 10] for generic input and output coordinates

and for arbitrary kernel shapes. The generalized convolution encompasses not only all sparse convo-

lutions but also the conventional dense convolutions. Let xin
u ∈ RN in

be an N in-dimensional input

feature vector in a D-dimensional space at u ∈ RD (a D-dimensional coordinate), and convolution

kernel weights be W ∈ RKD×Nout×N in

. We break down the weights into spatial weights with KD

matrices of size Nout × N in as Wi for |{i}i| = KD. Then, the conventional dense convolution in

D-dimension is

xout
u =

∑
i∈VD(K)

Wix
in
u+i for u ∈ ZD, (5.2)

where VD(K) is the list of offsets in D-dimensional hypercube centered at the origin. e.g. V1(3) =

{−1, 0, 1}. The generalized convolution in Eq. 5.3 relaxes Eq. 5.2.

xout
u =

∑
i∈ND(u,Cin)

Wix
in
u+i for u ∈ Cout (5.3)

whereND is a set of offsets that define the shape of a kernel andND(u, Cin) = {i|u+i ∈ Cin, i ∈ ND}
as the set of offsets from the current center, u, that exist in Cin. Cin and Cout are predefined input and

output coordinates of sparse tensors. First, note that the input coordinates and output coordinates

are not necessarily the same. Second, we define the shape of the convolution kernel arbitrarily with

ND. This generalization encompasses many special cases such as the dilated convolution and typical

hypercubic kernels. Another interesting special case is the ”sparse submanifold convolution” [10]

when we set Cout = Cin and ND = VD(K). If we set Cin = Cout = ZD and ND = VD(K), the

generalized convolution becomes the conventional dense convolution (Eq. 5.2). If we define the Cin

and Cout as multiples of a natural number and ND = VD(K), we have a strided dense convolution.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 67

5.4 Minkowski Engine

In this section, we propose an open-source auto-differentiation library for sparse tensors and the

generalized convolution (Sec. 5.3). As it is an extensive library with many functions, we will only

cover essential forward-pass functions.

5.4.1 Sparse Tensor Quantization

The first step in the sparse tensor network is the data processing to generate a sparse tensor,

which converts an input into unique coordinates, associated features, and optionally labels when

training for semantic segmentation. In Alg. 3, we list the GPU function for this process. When

a dense label is given, it is important that we ignore voxels with more than one unique labels.

This can be done by marking these voxels with IGNORE LABEL. First, we convert all coordinates

into hash keys and find all unique hashkey-label pairs to remove collisions. Note that SortByKey,

UniqueByKey, and ReduceByKey are all standard Thrust library functions [21]. The reduction

Algorithm 3 GPU Sparse Tensor Quantization

Inputs: coordinates Cp ∈ RN×D, features Fp ∈ RN×Nf , target labels l ∈ ZN+ , quantization step
size vl
C ′p ← floor(Cp / vl)
k← hash(C ′p), i← sequence(N)
((i′, l′), k′)← SortByKey((i, l), key=k)
(i′′, (k′′, l′′))← UniqueByKey(i′, key=(k′, l′))
(l′′′, i′′′)← ReduceByKey((l′′, i′′), key=k′′, fn=f)
return C ′p[i

′′′, :], Fp[i′′′, :], l′′′

function f((lx, ix), (ly, iy)) => (IGNORE LABEL, ix) takes label-key pairs and returns the IGNORE -

LABEL since at least two label-key pairs in the same key means there is a label collision. A CPU-

version works similarly except that all reduction and sorting are processed serially.

5.4.2 Generalized Convolution

The next step in the pipeline is generating the output coordinates Cout given the input coordinates

Cin (Eq. 5.3). When used in conventional neural networks, this process requires only a convolution

stride size, input coordinates, and the stride size of the input sparse tensor (the minimum distance

between coordinates). The algorithm is presented in the supplementary material. We create this

output coordinates dynamically allowing an arbitrary output coordinates Cout for the generalized

convolution.

Next, to convolve an input with a kernel, we need a mapping to identify which inputs affect which

outputs. This mapping is not required in conventional dense convolutions as it can be inferred easily.

However, for generalized convolution where coordinates are scattered arbitrarily, we need to specify

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 68

the mapping. We call this mapping the kernel maps and define them as pairs of lists of input indices

and output indices, M = {(Ii, Oi)}i for i ∈ ND. Finally, given the input and output coordinates,

the kernel map, and the kernel weights Wi, we can compute the generalized convolution by iterating

through each of the offset i ∈ ND (Alg. 4) where I[n] and O[n] indicate the n-th element of the

Algorithm 4 Generalized Sparse Convolution

Require: Kernel weights W, input features F i, output feature placeholder F o, convolution mapping
M,

1: F o ← 0 // set to 0
2: for all Wi, (Ii, Oi) ∈ (W,M) do
3: Ftmp ←Wi[F

i
Ii[1], F

i
Ii[2], ..., F

i
Ii[n]] // (cu)BLAS

4: Ftmp ← Ftmp + [F oOi[1], F
o
Oi[2], ..., F

o
Oi[n]]

5: [F oOi[1], F
o
Oi[2], ..., F

o
Oi[n]]← Ftmp

6: end for

list of indices I and O respectively and F in and F on are also n-th input and output feature vectors

respectively. The transposed generalized convolution (deconvolution) works similarly except that

the role of input and output coordinates is reversed.

5.4.3 Max Pooling

Unlike dense tensors, on sparse tensors, the number of input features varies per output. Thus,

this creates non-trivial implementation for a max/average pooling. Let I and O be the vector that

concatenated all {Ii}i and {Oi}i for i ∈ ND respectively. We first find the number of inputs per

each output coordinate and indices of the those inputs. Alg. 5 reduces the input features that

map to the same output coordinate. Sequence(n) generates a sequence of integers from 0 to n -

1 and the reduction function f((k1, v1), (k2, v2)) = min(v1, v2) which returns the minimum value

given two key-value pairs. MaxPoolKernel is a custom CUDA kernel that reduces all features at a

specified channel using S′, which contains the first index of I that maps to the same output, and

the corresponding output indices O”.

Algorithm 5 GPU Sparse Tensor MaxPooling

Input: input feature F , output mapping O
(I′,O′)← SortByKey(I, key=O)
S← Sequence(length(O′))
S′,O”← ReduceByKey(S, key=O′, fn=f)
return MaxPoolKernel(S′, I′, O”, F)

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 69

5.4.4 Global / Average Pooling, Sum Pooling

An average pooling and a global pooling layer compute the average of input features for each output

coordinate for average pooling or one output coordinate for global pooling. This can be implemented

in multiple ways. We use a sparse matrix multiplication since it can be optimized on hardware or

using a faster sparse BLAS library. In particular, we use the cuSparse library for sparse matrix-

matrix (cusparse_csrmm) and matrix-vector multiplication (cusparse_csrmv) to implement these

layers. Similar to the max pooling algorithm, M is the (I,O) input-to-output kernel map. For the

global pooling, we create the kernel map that maps all inputs to the origin and use the same Alg. 6.

The transposed pooling (unpooling) works similarly.

On the last line of the Alg. 6, we divide the pooled features by the number of inputs mapped to

each output. However, this process could remove density information. Thus, we propose a variation

that does not divide the number of inputs and named it the sum pooling.

Algorithm 6 GPU Sparse Tensor AvgPooling

Input: mapping M = (I,O), features F , one vector 1
SM = coo2csr(row=O, col=I, val=1)
F ′ = cusparse csrmm(SM , F)
N = cusparse csrmv(SM , 1)
return F ′/N

5.4.5 Non-spatial Functions

For functions that do not require spatial information (coordinates) such as ReLU, we can apply the

functions directly to the features F . Also, for batch normalization, as each row of F represents a

feature, we could use the 1D batch normalization function directly on F .

5.5 Minkowski Convolutional Neural Networks

In this section, we introduce 4-dimensional spatio-temporal convolutional neural networks for spatio-

temporal perception. We treat the time dimension as an extra spatial dimension and create networks

with 4-dimensional convolutions. However, there are unique problems arising from high-dimensional

convolutions. First, the computational cost and the number of parameters in the networks increase

exponentially as we increase the dimension. However, we experimentally show that these increases

do not necessarily lead to better performance. Second, the networks do not have an incentive to

make the prediction consistent throughout the space and time with conventional cross-entropy loss

alone.

To resolve the first problem, we make use of a special property of the generalized convolution

and propose non-conventional kernel shapes that not only save memory and computation, but also

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 70

perform better. Second, to enforce spatio-temporal consistency, we propose a high-dimensional con-

ditional random field (7D space-time-color space) that filters network predictions. We use variational

inference to train both the base network and the conditional random field end-to-end.

5.5.1 Tesseract Kernel and Hybrid Kernel

The surface area of 3D data increases linearly to time and quadratically to the spatial resolution.

However, when we use a conventional 4D hypercube, or a tesseract (Fig. 5.2), for a convolution kernel,

the exponential increase in the number of parameters leads to over-parametrization, overfitting, as

well as high computational-cost and memory consumption. Instead, we propose a hybrid kernel

(non-hypercubic, non-permutohedral) to save computation. We use the arbitrary kernel offsets ND

of the generalized convolution to implement the hybrid kernel.

The hybrid kernel is a combination of a cross-shaped kernel a conventional cubic kernel (Fig. 5.3).

For spatial dimensions, we use a cubic kernel to capture the spatial geometry accurately. For the

temporal dimension, we use the cross-shaped kernel to connect the same point in space across time.

We experimentally show that the hybrid kernel outperforms the tesseract kernel both in speed and

accuracy.

Cross Hypercross Cube Hypercube Hybrid

Figure 5.3: Various kernels in space-time. The red arrow indicates the temporal dimension and
the other two axes are for spatial dimensions. The third spatial dimension is hidden for better
visualization.

5.5.2 Residual Minkowski Networks

The generalized convolution allows us to define strides and kernel shapes arbitrarily. Thus, we can

create a high-dimensional network only with generalized convolutions, making the implementation

easier and generic. In addition, it allows us to adopt recent architectural innovations in 2D directly

to high-dimensional networks. To demonstrate, we create a high-dimensional version of a residual

network on Fig. 5.4. For the first layer, instead of a 7 × 7 2D convolution, we use a 5 × 5 × 5 × 1

generalized convolution. However, for the rest of the networks, we follow the original network

architecture.

For the U-shaped variants, we add multiple strided generalized convolutions and strided sparse

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 71

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 128

Sparse Conv 3×3×3+3, 128

Sparse Conv 3×3×3+3, 128

Sparse Conv 3×3×3+3, 128

Sparse Conv 5×5×5×1, 64

pool

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 512

Sparse Conv 3×3×3+3, 512

Sparse Conv 3×3×3+3, 512

Sparse Conv 3×3×3+3, 512

Linear

Conv 3×3, 256

Conv 3×3, 64

Conv 3×3, 64

Conv 3×3, 64

Conv 3×3, 64

Conv 3×3, 128

Conv 3×3, 128

Conv 3×3, 128

Conv 3×3, 128

Conv 7×7, 64

pool

Conv 3×3, 256

Conv 3×3, 256

Conv 3×3, 256

Conv 3×3, 512

Conv 3×3, 512

Conv 3×3, 512

Conv 3×3, 512

Linear

Figure 5.4: Architecture of ResNet18 (left) and MinkowskiNet18 (right). Note the structural simi-
larity. × indicates a hypercubic kernel, + indicates a hypercross kernel. (best viewed on display)

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
6

4

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
6

4

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
6

4

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
6

4

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
1

2
8

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
1

2
8

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
1

2
8

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
1

2
8

S
p

ar
se

 C
o

n
v

 5
×

5
×

5
×

1
,
6

4

p
o

o
l

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 1
×

1
×

1
×

1
,
L

A
B

E
L

S

S
p

ar
se

 C
o

n
v

 2
×

2
×

2
×

1
,
/2

S
p

ar
se

 C
o

n
v

 2
×

2
×

2
×

1
,
/2

S
p

ar
se

 C
o

n
v

 2
×

2
×

2
×

1
,
/2

S
p

ar
se

 C
o

n
v

 T
r

2
×

2
×

2
×

1
,
×

2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 T
r

2
×

2
×

2
×

1
,
×

2

S
p

ar
se

 C
o

n
v

 T
r

2
×

2
×

2
×

1
,
×

2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×

3
×

3
+

3
,
5

1
2

Figure 5.5: Architecture of MinkowskiUNet32. × indicates a hypercubic kernel, + indicates a
hypercross kernel. (best viewed on display)

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 72

transpose convolutions with skip connections connecting the layers with the same stride size (Fig. 5.5)

on the base residual network. We use multiple variations of the same architecture for semantic

segmentation experiments.

5.6 Trilateral Stationary-CRF

For semantic segmentation, the cross-entropy loss is applied for each pixel or voxel. However, the

loss does not enforce consistency as it does not have pair-wise terms. To make such consistency more

explicit, we propose a high-dimensional conditional random field (CRF) similar to the one used in

image semantic segmentation [39]. In image segmentation, the bilateral space that consists of 2D

space and 3D color is used for the CRF. For 3D-videos, we use the trilateral space that consists of

3D space, 1D time, and 3D chromatic space. The color space creates a ”spatial” gap between points

with different colors that are spatially adjacent (e.g., on a boundary). Thus, it prevents information

from ”leaking out” to different regions. Unlike conventional CRFs with Gaussian edge potentials and

dense connections [15, 39], we do not restrict the compatibility function to be a Gaussian. Instead,

we relax the constraint and only apply the stationarity condition.

To find the global optima of the distribution, we use the variational inference and convert a series

of fixed point update equations to a recurrent neural network similar to [39]. We use the generalized

convolution in 7D space to implement the recurrence and jointly train both the base network that

generates unary potentials and the CRF end-to-end.

5.6.1 Definition

Let a CRF node in the 7D (space-time-chroma) space be xi and the unary potential be φu(xi) and

the pairwise potential as φp(xi, xj) where xj is a neighbor of xi, N 7(xi). The conditional random

field is defined as

P (X) =
1

Z
exp

∑
i

φu(xi) +
∑

j∈N 7(xi)

φp(xi, xj)

where Z is the partition function; X is the set of all nodes; and φp must satisfy the stationarity

condition φp(u,v) = φp(u + τu,v + τv) for τu, τv ∈ RD. Note that we use the camera extrinsics to

define the spatial coordinates of a node xi in the world coordinate system. This allows stationary

points to have the same coordinates throughout the time.

5.6.2 Variational Inference

The optimization arg maxX P (X) is intractable. Instead, we use the variational inference to minimize

divergence between the optimal P (X) and an approximated distribution Q(X). Specifically, we use

the mean-field approximation, Q =
∏
iQi(xi) as the closed form solution exists. From the Theorem

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 73

11.9 in [14], Q is a local maximum if and only if

Qi(xi) =
1

Zi
exp E

X−i∼Q−i

φu(xi) +
∑

j∈N 7(xi)

φp(xi, xj)

 .
X−i and Q−i indicate all nodes or variables except for the i-th one. The final fixed-point equation

is Eq. 5.4. The derivation is in the supplementary material.

Q+
i (xi) =

1

Zi
exp

φu(xi) +
∑

j∈N 7(xi)

∑
xj

φp(xi, xj)Qj(xj)

 (5.4)

5.6.3 Learning with 7D Sparse Convolution

Interestingly, the weighted sum φp(xi, xj)Qj(xj) in Eq. 5.4 is equivalent to a generalized convolution

in the 7D space since φp is stationary and each edge between xi, xj can be encoded using N 7. Thus,

we convert fixed point update equation Eq. 5.4 into an algorithm in Alg. 7.

Algorithm 7 Variational Inference of TS-CRF

Require: Input: Logit scores φu for all xi; associated coordinate Ci, color Fi, time Ti
Q0(X) = expφu(X), Ccrf = [C,F, T]
for n from 1 to N do

Q̃n = SparseConvolution((Ccrf, Q
n−1), kernel=φp)

Qn = Softmax(φu + Q̃n)
end for
return QN

Finally, we use φu as the logit predictions of a 4D Minkowski network and train both φu and φp

end-to-end using one 4D and one 7D Minkowski network using Eq. 5.5.

∂L

∂φp
=

N∑
n

∂L

∂Qn+

∂Qn+

∂φp
,

∂L

∂φu
=

N∑
n

∂L

∂Qn+

∂Qn+

∂φu
(5.5)

5.7 Experiments

To validate the proposed high-dimensional networks, we first use multiple standard 3D benchmarks

for 3D semantic segmentation. It allows us to gauge the performance of the high-dimensional

networks with the same architecture with other state-of-the-art methods. Next, we create multiple

4D datasets from 3D datasets that have temporal sequences and analyze each of the proposed

components for ablation study.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 74

5.7.1 Implementation

We implemented the Minkowski Engine (Sec. 5.4) using C++/CUDA and wrap it with PyTorch [23].

Data is prepared in parallel data processes that load point clouds, apply data augmentation, and

quantize them with Alg. 3 on the fly. For non-spatial functions, we use the PyTorch functions

directly.

5.7.2 Training and Evaluation

We use Momentum SGD with the Poly scheduler to train networks from learning rate 1e-1 and apply

data augmentation including random scaling, rotation around the gravity axis, spatial translation,

spatial elastic distortion, and chromatic translation and jitter.

For evaluation, we use the standard mean Intersection over Union (mIoU) and mean Accuracy

(mAcc) for metrics following the previous works. To convert voxel-level predictions to point-level

predictions, we simply propagated predictions from the nearest voxel center.

5.7.3 Datasets

ScanNet. The ScanNet [6] 3D segmentation benchmark consists of 3D reconstructions of real

rooms. It contains 1.5k rooms, some repeated rooms captured with different sensors. We feed an

entire room to a MinkowskiNet fully convolutionally without cropping.

Stanford 3D Indoor Spaces (S3DIS). The dataset [2] contains 3D scans of six floors of three

different buildings. We use the Fold #1 split following many previous works. We use 5cm and 2cm

voxel for the experiment.

RueMonge 2014 (Varcity). The RueMonge 2014 dataset [27] provides semantic labels for a

multi-view 3D reconstruction of the Rue Mongue. To create a 4D dataset, we crop the 3D recon-

struction on-the-fly to generate a temporal sequence. We use the official split for all experiments.

Synthia 4D. We use the Synthia dataset [29] to create 3D video sequences. We use 6 sequences

of driving scenarios in 9 different weather conditions. Each sequence consists of 4 stereo RGB-D

images taken from the top of a car. We back-project the depth images to the 3D space to create 3D

videos. We visualized a part of a sequence in Fig. 5.1.

We use the sequence 1-4 except for sunset, spring, and fog for the train split; the sequence 5 foggy

weather for validation; and the sequence 6 sunset and spring for the test. In total, the train/val/test

set contain 20k/815/1886 3D scenes respectively.

Since the dataset is purely synthetic, we added various noise to the input point clouds to simulate

noisy observations. We used elastic distortion, Gaussian noise, and chromatic shift in the color for

the noisy 4D Synthia experiments.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 75

Table 5.1: 3D Semantic Label Benchmark on ScanNet† [6]

Method mIOU

ScanNet [6] 30.6
SSC-UNet [11] 30.8

PointNet++ [25] 33.9
ScanNet-FTSDF 38.3

SPLATNet [30] 39.3
TangetConv [31] 43.8
SurfaceConv [22] 44.2

3DMV‡ [7] 48.4
3DMV-FTSDF‡ 50.1
PointNet++SW 52.3

MinkowskiNet42 (5cm) 67.9

SparseConvNet [11]† 72.5
MinkowskiNet42 (2cm)† 73.4

†: post-CVPR submissions. ‡: uses 2D images additionally. Per class IoU in the supplementary
material. The parenthesis next to our methods indicate the voxel size.

Table 5.2: ScanNet [6] 3D Segmentation Benchmark Results

Method bath bed bksf cab chair cntr curt desk door floor othr pic ref show sink sofa tab toil wall wind mIoU

ScanNet [6] 20.3 36.6 50.1 31.1 52.4 21.1 0.2 34.2 18.9 78.6 14.5 10.2 24.5 15.2 31.8 34.8 30.0 46.0 43.7 18.2 30.6
SSC-UNet [10] 35.3 29.0 27.8 16.6 55.3 16.9 28.6 14.7 14.8 90.8 18.2 6.4 2.3 1.8 35.4 36.3 34.5 54.6 68.5 27.8 30.8

PointNet++ [25] 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2 33.9
ScanNet+SDF 29.7 49.1 43.2 35.8 61.2 27.4 11.6 41.1 26.5 90.4 22.9 7.9 25.0 18.5 32.0 51.0 38.5 54.8 59.7 39.4 38.3

SPLATNet [30] 47.2 51.1 60.6 31.1 65.6 24.5 40.5 32.8 19.7 92.7 22.7 0.0 0.1 24.9 27.1 51.0 38.3 59.3 69.9 26.7 39.3
TangetConv [31] 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2 43.8
SurfaceConv [22] 50.5 62.2 38.0 34.2 65.4 22.7 39.7 36.7 27.6 92.4 24.0 19.8 35.9 26.2 36.6 58.1 43.5 64.0 66.8 39.8 44.2

3DMV [7] 48.4 53.8 64.3 42.4 60.6 31.0 57.4 43.3 37.8 79.6 30.1 21.4 53.7 20.8 47.2 50.7 41.3 69.3 60.2 53.9 48.4
3DMV-FTSDF 55.8 60.8 42.4 47.8 69.0 24.6 58.6 46.8 45.0 91.1 39.4 16.0 43.8 21.2 43.2 54.1 47.5 74.2 72.7 47.7 50.1

MinkowskiNet42 (5cm) 81.1 73.4 73.9 64.1 80.4 41.3 75.9 69.6 54.5 93.8 51.8 14.1 62.3 75.7 68.0 72.3 68.4 89.6 82.1 65.1 67.9
MinkowskiNet42 (2cm) 83.7 80.4 80.0 72.1 84.3 46.0 83.5 64.7 59.7 95.3 54.2 21.4 74.6 91.2 70.5 77.1 64.0 87.6 84.2 67.2 72.1

5.7.4 Results and Analysis

ScanNet & Stanford 3D Indoor The ScanNet and the Stanford Indoor datasets are one of the

largest non-synthetic datasets, which make the datasets ideal test beds for 3D segmentation. We were

able to achieve +19% mIOU on ScanNet, and +7% on Stanford compared with the best-published

works by the CVPR deadline. This is due to the depth of the networks and the fine resolution of the

space. We trained the same network for 60k iterations with 2cm voxel and achieved 72.1% mIoU on

ScanNet after the deadline. For all evaluation, we feed an entire room to a network and process it

fully convolutionally.

4D analysis The RueMongue dataset is a small dataset that ranges one section of a street, so

with the smallest network, we were able to achieve the best result (Tab. 5.6). However, the results

quickly saturate. On the other hand, the Synthia 4D dataset has an order of magnitude more 3D

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 76

wall
flo

or

ca
binet bed

ch
air sof

a
tab

le
doo

r

window

boo
ksh

elf

pict
ure

co
unter desk

cu
rta

in

ref
rig

era
tor

sh
ow

er
cu

rta
in
toi

let sin
k

bath
tub

oth
erf

urn
itu

re

Predicted label

wall

floor

cabinet

bed

chair

sofa

table

door

window

bookshelf

picture

counter

desk

curtain

refrigerator

shower curtain

toilet

sink

bathtub

otherfurniture

G
ru

nd
-t

ru
th

 la
be

l

0.94 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.98 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.02 0.70 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.02 0.01 0.00 0.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.02 0.00 0.00 0.93 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.02 0.00 0.01 0.07 0.86 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.03 0.04 0.00 0.00 0.04 0.01 0.80 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02

0.22 0.01 0.00 0.00 0.00 0.00 0.00 0.72 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.64 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01

0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.88 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.54 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.00 0.19 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

0.05 0.03 0.01 0.01 0.01 0.00 0.08 0.00 0.00 0.01 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00

0.14 0.01 0.14 0.00 0.00 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.02

0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.74 0.00 0.00 0.01 0.00

0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00

0.03 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00

0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.94 0.00

0.10 0.04 0.07 0.05 0.03 0.01 0.06 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.62
0.0

0.2

0.4

0.6

0.8

clu
tte

r
bea

m
boa

rd

boo
kca

se

cei
lin

g
ch

air

co
lumn

doo
r

flo
or sof

a
tab

le
wall

window

Predicted label

clutter

beam

board

bookcase

ceiling

chair

column

door

floor

sofa

table

wall

window

G
ru

nd
-t

ru
th

 la
be

l

0.78 0.01 0.00 0.06 0.04 0.01 0.00 0.00 0.00 0.00 0.02 0.07 0.00

0.15 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00

0.11 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00

0.13 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00

0.01 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

0.01 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.01 0.00 0.00 0.02 0.00 0.00 0.34 0.02 0.00 0.00 0.00 0.61 0.01

0.06 0.00 0.02 0.02 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.12 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00

0.12 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.67 0.05 0.01 0.00

0.06 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.90 0.01 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.97 0.00

0.03 0.00 0.00 0.00 0.02 0.00 0.01 0.20 0.01 0.00 0.00 0.21 0.51

0.0

0.2

0.4

0.6

0.8

Figure 5.6: Confusion matrices for the Scannet (left) and the Stanford dataset (right)

Table 5.3: Segmentation results on the 4D Synthia dataset

Method mIOU mAcc

3D MinkNet20 76.24 89.31
3D MinkNet20 + TA 77.03 89.20

4D Tesseract MinkNet20 75.34 89.27
4D MinkNet20 77.46 88.013
4D MinkNet20 + TS-CRF 78.30 90.23
4D MinkNet32 + TS-CRF 78.67 90.51

TA denotes temporal averaging. Per class IoU in the supplementary material.

scans than any other datasets, so it is more suitable for the ablation study.

We use the Synthia datasets with and without noise for 3D and 4D analysis and results are

presented in Tab. 5.3 and Tab. 5.4. We use various 3D and 4D networks with and without TS-CRF.

Specifically, when we simulate noise in sensory inputs on the 4D Synthia dataset, we can observe

that the 4D networks are more robust to noise. Note that the number of parameters added to the

4D network compared with the 3D network is less than 6.4 % and 6e-3 % for the TS-CRF. Thus,

with a small increase in computation, we could get a more robust algorithm with higher accuracy. In

addition, when we process temporal sequence using the 4D networks, we could even get small speed

gain as we process data in a batch mode. On Tab. 5.7, we vary the voxel size and the sequence length

and measured the runtime of the 3D and 4D networks, as well as the 4D networks with TS-CRF.

Note that for large voxel sizes, we tend to get small speed gain on the 4D networks compared with

3D networks.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 77

Table 5.4: Segmentation results on the noisy Synthia 4D dataset

IoU Building Road Sidewalk Fence Vegetation Pole Car Traffic Sign Pedestrian Lanemarking Traffic Light mIoU

3D MinkNet42 87.954 97.511 78.346 84.307 96.225 94.785 87.370 42.705 66.666 52.665 55.353 76.717
3D MinkNet42 + TA 87.796 97.068 78.500 83.938 96.290 94.764 85.248 43.723 62.048 50.319 54.825 75.865

4D Tesseract MinkNet42 89.957 96.917 81.755 82.841 96.556 96.042 91.196 52.149 51.824 70.388 57.960 78.871
4D MinkNet42 88.890 97.720 85.206 84.855 97.325 96.147 92.209 61.794 61.647 55.673 56.735 79.836

TA denotes temporal averaging. As the input pointcloud coordinates are noisy, averaging along the
temporal dimension introduces noise.

Figure 5.7: Visualizations of 3D (top), and 4D networks (bottom) on Synthia. A road (blue) far
away from the car is often confused as sidewalks (green) with a 3D network, which persists after
temporal averaging. However, 4D networks accurately captured it.

5.8 Conclusion

In this paper, we propose a generalized sparse convolution and an auto-differentiation library for

sparse tensors and the generalized sparse convolution. Using these, we create 4D convolutional

neural networks for spatio-temporal perception. Experimentally, we show that 3D convolutional

neural networks alone can outperform 2D networks and 4D perception can be more robust to noise.

5.9 Acknowledgements

Toyota Research Institute (”TRI”) provided funds to assist the authors with their research but this

article solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota

entity. We acknowledge the support of the System X Fellowship and the companies sponsored: NEC

Corporation, Nvidia, Samsung, and Tencent. Also, we want to acknowledge the academic hardware

donation from Nvidia.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 78

Figure 5.8: Visualization of Scannet predictions. From the top, a 3D input pointcloud, a network
prediction, and the ground-truth.

Table 5.5: Stanford Area 5 Test (Fold #1) (S3DIS) [2]

Method mIOU mAcc

PointNet [24] 41.09 48.98
SparseUNet [10] 41.72 64.62

SegCloud [32] 48.92 57.35
TangentConv [31] 52.8 60.7

3D RNN [36] 53.4 71.3
PointCNN [17] 57.26 63.86

SuperpointGraph [16] 58.04 66.5

MinkowskiNet20 62.60 69.62
MinkowskiNet32 65.35 71.71

Per class IoU in the supplementary material.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 79

Figure 5.9: Visualization of Stanford dataset Area 5 test results. From the top, RGB input, predic-
tion, ground truth.

Table 5.6: RueMonge 2014 dataset (Varcity) TASK3 [27]

Method mIOU

MV-CRF [28] 42.3
Gradde et al. [8] 54.4
RF+3D CRF [19] 56.4
OctNet (2563) [26] 59.2
SPLATNet (3D) [30] 65.4

3D MinkNet20 66.46
4D MinkNet20 66.56
4D MinkNet20 + TS-CRF 66.59

The performance saturates quickly due to the small training set. Per class IoU in the supplementary
material.

CHAPTER 5. SPATIO TEMPORAL SEGMENTATION 80

Table 5.7: Time (s) to process 3D videos with 3D and 4D MinkNet, the volume of a scan at each
time step is 50m× 50m × 50m

Voxel Size 0.6m 0.45m 0.3m

Video Length (s) 3D 4D 4D-CRF 3D 4D 4D-CRF 3D 4D 4D-CRF

3 0.18 0.14 0.17 0.25 0.22 0.27 0.43 0.49 0.59
5 0.31 0.23 0.27 0.41 0.39 0.47 0.71 0.94 1.13
7 0.43 0.31 0.38 0.58 0.61 0.74 0.99 1.59 2.02

Bibliography

[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis. Fast high-dimensional filtering

using the permutohedral lattice. In Computer Graphics Forum, volume 29, pages 753–762.

Wiley Online Library, 2010.

[2] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and

Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE

International Conference on Computer Vision and Pattern Recognition, 2016.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[5] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2:

A unified approach for single and multi-view 3d object reconstruction. In Proceedings of the

European Conference on Computer Vision (ECCV), 2016.

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias

Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer

Vision and Pattern Recognition (CVPR), IEEE, 2017.

[7] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view prediction for 3d semantic scene

segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[8] Raghudeep Gadde, Varun Jampani, Renaud Marlet, and Peter Gehler. Efficient 2d and 3d

facade segmentation using auto-context. IEEE transactions on pattern analysis and machine

intelligence, 2017.

[9] Benjamin Graham. Spatially-sparse convolutional neural networks. arXiv preprint

arXiv:1409.6070, 2014.

[10] Ben Graham. Sparse 3d convolutional neural networks. British Machine Vision Conference,

2015.

[11] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D semantic segmentation

with submanifold sparse convolutional networks. CVPR, 2018.

81

BIBLIOGRAPHY 82

[12] P. Hermosilla, T. Ritschel, P-P Vazquez, A. Vinacua, and T. Ropinski. Monte carlo convo-

lution for learning on non-uniformly sampled point clouds. ACM Transactions on Graphics

(Proceedings of SIGGRAPH Asia 2018), 2018.

[13] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016.

[14] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques -

Adaptive Computation and Machine Learning. The MIT Press, 2009.

[15] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with gaussian

edge potentials. In Advances in Neural Information Processing Systems 24, 2011.

[16] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with

superpoint graphs. arXiv preprint arXiv:1711.09869, 2017.

[17] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. Pointcnn. arXiv preprint

arXiv:1801.07791, 2018.

[18] Maria Lorenzo-Valdés, Gerardo I Sanchez-Ortiz, Andrew G Elkington, Raad H Mohiaddin, and

Daniel Rueckert. Segmentation of 4d cardiac mr images using a probabilistic atlas and the em

algorithm. Medical Image Analysis, 8(3):255–265, 2004.

[19] Andelo Martinovic, Jan Knopp, Hayko Riemenschneider, and Luc Van Gool. 3d all the way:

Semantic segmentation of urban scenes from start to end in 3d. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015.

[20] Tim McInerney and Demetri Terzopoulos. A dynamic finite element surface model for segmen-

tation and tracking in multidimensional medical images with application to cardiac 4d image

analysis. Computerized Medical Imaging and Graphics, 19(1):69–83, 1995.

[21] Nvidia. Thrust: Parallel algorithm library.

[22] Hao Pan, Shilin Liu, Yang Liu, and Xin Tong. Convolutional neural networks on 3d surfaces

using parallel frames. arXiv preprint arXiv:1808.04952, 2018.

[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

pytorch. 2017.

[24] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning

on point sets for 3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016.

[25] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. In Advances in Neural Information Processing

Systems, 2017.

[26] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d represen-

tations at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

BIBLIOGRAPHY 83

[27] Hayko Riemenschneider, András Bódis-Szomorú, Julien Weissenberg, and Luc Van Gool. Learn-

ing where to classify in multi-view semantic segmentation. In European Conference on Computer

Vision. Springer, 2014.

[28] Hayko Riemenschneider, András Bódis-Szomorú, Julien Weissenberg, and Luc Van Gool. Learn-

ing where to classify in multi-view semantic segmentation. In European Conference on Computer

Vision, 2014.

[29] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M. Lopez. The

synthia dataset: A large collection of synthetic images for semantic segmentation of urban

scenes. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[30] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Vangelis Kalogerakis, Ming-Hsuan

Yang, and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. arXiv

preprint arXiv:1802.08275, 2018.

[31] Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and Qian-Yi Zhou. Tangent convolutions

for dense prediction in 3D. CVPR, 2018.

[32] Lyne P Tchapmi, Christopher B Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese.

Segcloud: Semantic segmentation of 3d point clouds. International Conference on 3D Vision

(3DV), 2017.

[33] Parker Allen Tew. An investigation of sparse tensor formats for tensor libraries. PhD thesis,

Massachusetts Institute of Technology, 2016.

[34] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François

Goulette, and Leonidas J. Guibas. Kpconv: Flexible and deformable convolution for point

clouds. Proceedings of the IEEE International Conference on Computer Vision, 2019.

[35] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.

Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics

(TOG), 2019.

[36] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xiaolin Zhang. 3d recurrent neural net-

works with context fusion for point cloud semantic segmentation. In The European Conference

on Computer Vision (ECCV), September 2018.

[37] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. 3dmatch: Learning the

matching of local 3d geometry in range scans. In CVPR, 2017.

[38] Yu Zhao, Xiang Li, Wei Zhang, Shijie Zhao, Milad Makkie, Mo Zhang, Quanzheng Li, and

Tianming Liu. Modeling 4d fmri data via spatio-temporal convolutional neural networks (st-

cnn). arXiv preprint arXiv:1805.12564, 2018.

[39] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su,

Dalong Du, Chang Huang, and Philip H. S. Torr. Conditional random fields as recurrent neural

BIBLIOGRAPHY 84

networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision

(ICCV), 2015.

