
Chapter 6

Geometric Features

6.1 Introduction

Finding geometric correspondences is a key step in many 3D registration, tracking, and scene flow

estimation pipelines. A substantial body of work has thus focused on designing 3D features that

can capture discriminative local geometry for correspondence establishment [16, 29, 26, 24, 23, 36,

17, 7, 6].

Learning-based 3D features have recently gained popularity due to their robustness and superior

performance. Existing learning-based features rely on low-level geometric characteristics as input:

e.g., angular deviation [7, 6, 26, 29, 23], point distributions [17, 16, 21], or volumetric distance

functions [36, 11]. Then, a 3D patch is extracted at each point of interest and mapped to a low-

dimensional feature space through a multi-layer perceptron or 3D convolutions. This process is

computationally expensive and features are extracted only at downsampled interest points, thus

lowering the spatial resolution for subsequent registration steps.

Such patch-based processing is inefficient because intermediate network activations are not reused

across adjacent patches. If we use a 2D analogy, extracting 3D patches for feature learning is akin

to extracting small 2D patches around each pixel for semantic segmentation. Furthermore, current

pipelines limit spatial context by focusing on patches with restricted spatial extent.

Instead, we could apply 3D convolutions on the entire input without cropping out sections by

simply transforming convolutions to fully-convolutional counterparts. Similarly, we could convert

all fully-connected layers in a multi-layer perceptron into a series of convolutional layers with kernel

size 1 × 1 × 1. This is known as fully-convolutional processing and has been widely used in image

analysis [20, 35, 5, 3]. Fully-convolutional networks can capture broad context, and are faster and

more memory-efficient than non-fully-convolutional counterparts since intermediate activations are

reused across overlapping regions.

85

CHAPTER 6. GEOMETRIC FEATURES 86

103 104 105

Number of features per second (log scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fe
at

ur
e-

m
at

ch
 re

ca
ll

Spin Image
SHOT
FPFH
USC
PointNet
CGF
3DMatch
FoldNet
PPFNet
PPF-FoldNet
DirectReg
CapsuleNet
PerfectMatch
Ours

Figure 6.1: Feature-match recall [6, 7] and speed in log scale on the 3DMatch benchmark [36]. Our
approach is the most accurate and the fastest. The gray region shows the Pareto frontier of the
prior methods.

Despite these advantages, fully-convolutional networks have not been widely used for 3D geo-

metric feature extraction due to the characteristics of 3D data. A standard input representation for

convolutional networks on 3D data is a dense 4D tensor: three spatial dimensions and one feature

dimension. This representation has a massive memory footprint, even though most 3D voxels are

empty.

In this work, we adopt a sparse tensor representation, introduced in recent work on 3D semantic

segmentation [12, 2]. We also introduce new losses for fully-convolutional metric learning, based

on the observation that the characteristics of fully-convolutional features differ from traditional

independent identically distributed (i.i.d.) features traditionally assumed in metric learning. Our

approach does not require low-level preprocessing or 3D patches as input, and can rapidly generate

high-resolution features with state-of-the-art discriminative power.

We validate fully-convolutional geometric features (FCGF) on both indoor and outdoor 3D

datasets [36, 10]. Our approach achieves state-of-the-art performance on the 3DMatch bench-

mark [36], while being nine times faster than the fastest learning-based method and 290 times

faster than the current state of the art (Fig. 6.1).

6.2 Related Work

Hand-crafted 3D features. Early work on 3D feature description focused on hand-crafting de-

scriptors that can discriminatively characterize local geometry. Spin Images [16] use a projection of

adjacent points onto the tangent plane. USC [29] uses covariance matrices of point pairs. SHOT [26]

CHAPTER 6. GEOMETRIC FEATURES 87

creates a 3D histogram of normal vectors. PFH [24] and FPFH [23] build an oriented histogram using

pairwise geometric properties. Guo et al. [13] provide a comprehensive review of such hand-crafted

descriptors.

Learning-based 3D features. More recently, attention has shifted to learning-based 3D features.

Zeng et al. [36] use a siamese convolutional network to learn 3D patch descriptors. Khoury et al. [17]

map 3D oriented histograms to a low-dimensional feature space using multi-layer perceptrons. Deng

et al. [7, 6] adapt the PointNet architecture for geometric feature description. Yew and Lee [34] use

a PointNet to extract features in outdoor scenes.

Our work addressed a number of limitations in the prior work. First, all prior approaches

extract a small 3D patch or a set of points and map it to a low-dimensional space. This not only

limits the receptive field of the network but is also computationally inefficient since all intermediate

representations are computed separately even for overlapping 3D regions. Second, using expensive

low-level geometric signatures as input can slow down feature computation. Lastly, limiting feature

extraction to a subset of interest points results in lower spatial resolution for subsequent matching

stages and can thus reduce registration accuracy.

Fully-convolutional networks. Fully-convolutional networks for images were introduced by Long

et al. [20]. In 3D space, fully-convolutional networks have been used for semantic segmenta-

tion [4, 12, 22, 2]. The broad adoption of fully-convolutional networks can be attributed to three

factors. First, fully-convolutional networks are efficient and fast because they share intermediate

activations across neurons with overlapping receptive fields. Second, neurons in fully-convolutional

networks can have bigger receptive fields because they are not constrained by operating on sepa-

rately extracted and processed patches. Third, fully-convolutional networks produce dense output,

which is well-suited for tasks that call for detailed characterization of scenes.

Deep metric learning. Deep metric learning combines deep networks and metric learning to pro-

duce compact embeddings. The contrastive loss formulates the objective in terms of pairwise con-

straints [14]. There has also been significant interest in higher-order loss terms, including triplet [32],

quadruplet [18], and histogram losses [30]. Due to the polynomial growth in complexity that ac-

companies high-order losses, many recent papers focus on triplets with hard-negative mining within

a batch. Lifted structure [28] and N-pair losses [27] proposed using a softmax for mining hard

negatives within a batch.

In this work, we study fully-convolutional metric learning, where the basic assumption that

features are independent and identically distributed (i.i.d.) within a batch no longer holds. To

address this, we develop new losses for fully-convolutional feature learning and show that they are

more effective than traditional ones.

CHAPTER 6. GEOMETRIC FEATURES 88

6.3 Sparse Tensors and Convolutions

The 3D data of interest in this work consists of 3D scans of surfaces. In such datasets, most of the

3D space is empty. To handle this sparsity, we use sparse tensors: high-dimensional equivalents of

sparse matrices. Mathematically, we can represent a sparse tensor for 3D data as a set of coordinates

C and associated features F :

C =

x1 y1 z1 b1
...

...
...

...

xN yN zN bN

 , F =

fT1
...

fTN

 (6.1)

where xi, yi, zi ∈ Z is the i-th 3D coordinate and bi is the batch index which provides an additional

dimension for batch processing. fi is the feature associated with the i-th coordinate.

Convolutions on sparse tensors (also known as sparse convolutions) require a somewhat different

definition from conventional (dense) convolutions. In discrete dense 3D convolution, we extract

input features and multiply with a dense kernel matrix. Denote a set of offsets in n-dimensional

space by Vn(K), where K is the kernel size. For example, in 1D, V1(3) = {−1, 0, 1}. The dense

convolution can be defined as in Eq. 6.2, where Wi denotes the kernel value at offset i:

xout
u =

∑
i∈V3(K)

Wix
in
u+i for u ∈ Z3. (6.2)

In contrast, a sparse tensor has a feature at location u only if the corresponding coordinates

are present in the set C. Thus it suffices to evaluate the convolution terms only over a subset

Nn(u,K,C) = {i|i ∈ Vn(K), i + u ∈ C}. (I.e., the set of offsets i for which i + u is present in the

set of coordinates C.) If we make the sets of input and output coordinates different (C in and Cout,

respectively), we arrive at the generalized convolution [2], summarized in Eq. 6.3:

x′
out
u =

∑
i∈N 3(u,K,Cin)

Wix
′in
u+i for u ∈ Cout. (6.3)

Sparse fully-convolutional features. Fully-convolutional networks consist purely of translation-

invariant operations, such as convolutions and elementwise nonlinearities. Similarly, if we apply a

sparse convolutional network to a sparse tensor, we get a sparse output tensor. We refer to the

contents of this output tensor as fully-convolutional features. We use a UNet structure with skip

connections and residual blocks to extract such sparse fully-convolutional features. Our network

architecture is visualized in Fig. 6.2.

CHAPTER 6. GEOMETRIC FEATURES 89

3D
 C

onv 3×3×3, 1, N

3D
 C

onv 3×3×3, 1, N

3D
 C

onv 3×3×3, 2, 64

3D
 C

onv 7×7×7, 1, 32

3D
 C

onv 3×3×3, 2, 128

3D
 C

onv 3×3×3, 2, 256

3D
 C

onvTr3×3×3, 2, 128

3D
 C

onvTr3×3×3, 2, 64

3D
 C

onvTr3×3×3, 2, 64

G
eom

etric Features

R
esB

lock
-64

R
esB

lock
-128

R
esB

lock
-256

R
esB

lock
-128

R
esB

lock
-64

R
esB

lock
-N3D

 C
onv 1×1×1, 1, 32

3D
 C

onv 3×3×3, 1, 32

Figure 6.2: We use a ResUNet architecture. The white blocks indicate input and output layers.
Each block is characterized by three parameters: kernel size, stride, and channel dimensionality. All
convolutions except the last layer are accompanied by batch normalization followed by a nonlinearity
(ReLU).

6.4 Fully-convolutional Metric Learning

In this section, we briefly go over a few standard metric learning losses and negative-mining tech-

niques. Then, we characterize metric learning in the fully-convolutional setting and propose variants

for fully-convolutional features that integrate negative-mining into the contrastive and triplet losses.

We refer to these new losses as “hardest-contrastive” and “hardest-triplet”.

Metric learning begins with two constraints: similar features have to be close to each other –

D(fi, fj)→ 0 ∀(i, j) ∈ P – and dissimilar features have to be at least a margin away: D(fi, fj) > m

∀ (i, j) ∈ N , where D(·, ·) is a distance measure. We square the violation and get a standard

contrastive loss. Lin et al. [19] showed that the constraints for positive pairs could lead to overfitting

and proposed a margin-based loss for positive pairs:

L(fi, fj) = Iij [D(fi, fj)−mp]
2
+ + Īij [mn −D(fi, fj)]

2
+

where Iij = 1 if (i, j) ∈ P and 0 otherwise, and ·̄ is the NOT operator. mp and mn are margins for

positive and negative pairs. Similarly, we can convert the ranking constraint m+D(f , f+) < D(f , f−)

into a triplet loss:

L(f , f+, f−) = [m+D(f , f+)−D(f , f−)]2+ (6.4)

For both contrastive and triplet losses, the sampling strategy affects the performance greatly as the

decision boundary is defined by very few hardest negatives.

6.4.1 Characteristics of Fully-convolutional Features

Traditional metric learning assumes that the features are independent and identically distributed

(i.i.d.) since a batch is constructed by random sampling [14, 32, 28, 27]. However, in fully-

convolutional feature extraction, adjacent features are locally correlated. Thus, hard-negative mining

CHAPTER 6. GEOMETRIC FEATURES 90

Contrastive Triplet Hardest-contrastive Hardest-triplet

Figure 6.3: Sampling and negative-mining strategy for each method. Traditional contrastive and
triplet losses use random sampling. Our hardest-contrastive and hardest-triplet losses use the hardest
negatives.

could find features adjacent to anchors, and they are false negatives. Thus, filtering out the false

negatives is crucial, and Choy et al. [3] used a distance threshold.

Also, the number of features used in the fully-convolutional setting is orders of magnitude larger

than in standard metric learning algorithms [27, 28]. For instance, FCGF generates ∼40k features

for a pair of scans (this increases proportionally with the batch size) while a minibatch in traditional

metric learning has around 1k features. Thus, it is not feasible to use all pairwise distances within

a batch as in standard metric learning.

6.4.2 Hardest-contrastive and Hardest-triplet Losses

In this section, we propose metric learning losses for fully-convolutional feature learning. Like many

algorithms in metric learning, we focus on efficient hard-negative mining. First, we sample anchor

points and a set for mining per scene. Then, we mine the hardest negatives f−i , f
−
j for both fi and fj

in a positive pair (fi, fj) (Fig. 6.3) and remove false negatives that fall within a certain radius from

the corresponding anchor. Then, we use the pairwise loss for the mined quadruplet (fi, fj , f
−
i , f

−
j)

and form the fully-convolutional contrastive loss:

LC =
∑

(i,j)∈P

{
[D(fi, fj)−mp]

2
+ /|P|

+ λnIi

[
mn − min

k∈N
D(fi, fk)

]2

+

/|Pi|

+ λnIj

[
mn − min

k∈N
D(fj , fk)

]2

+

/|Pj |

} (6.5)

where P is a set of all positive pairs in fully-convolutionally extracted features in a minibatch and

N is a random subset of fully-convolutional features in a minibatch that will be used for negative

mining. Ii is short for I(i, ki, dt), which is an indicator function that returns 1 if the feature ki

is located outside a sphere with diameter dt centered at feature i in the physical domain and 0

otherwise, where ki = arg mink∈N D(fi, fk). |Pi| =
∑

(i,j)∈P I(i, ki, dt) is the number of valid mined

CHAPTER 6. GEOMETRIC FEATURES 91

negatives for the first item (|Pj | for the second item) in a pair. The indicator function removes the

hardest negative loss if the hardest negative is physically close to the ground truth correspondence.

The normalization term for negative pairs is simply averaging all valid negative pairs equally. λn

is a weight for negative losses and we simply used 0.5 to weight positives and negatives equally.

Similarly, we can form a triplet loss with hard negatives mined within a batch:

LT =
1

Z

∑
(i,j)∈P

(
I(i, ki)

[
m+D(fi, fj)− min

k∈N
D(fi, fk)

]
+

+ I(j, kj)

[
m+D(fi, fj)− min

k∈N
D(fj , fk)

]
+

)
(6.6)

where Z =
∑

(i,j)∈P(I(i, ki) + I(j, kj)), a normalization constant. The above equation finds the

hardest negatives for both (i, j) ∈ P (Fig. 6.3). Here P is the set of all positive pairs in the batch.

Note that we followed Hermans et al. [15] and used non-squared loss to mitigate features from

collapsing into a single point. Experimentally, we still observed that the fully-convolutional hardest

triplet loss is prone to collapse (all features converge to a single point). Instead, we mix the above

triplet loss with randomly sampled triplets to mitigate the collapse. Similar to Eq. 6.6, we weigh

both randomly subsampled triplets and hard-negative triplets equally.

6.5 Implementation

We use the Minkowski Engine [2], an auto-differentiation library for sparse tenors, for sparse con-

volution and other essential layers. As the input to the network requires unique coordinates C and

corresponding features F , we first downsample the input point cloud using a fast GPU-based voxel

downsampling function. All these preprocessing steps can be parallelized in data-loading parallel

processes and consume a fraction of the training time.

Hash-based negative filtering. One of the most time-consuming parts in both Eqs. 6.5 and 6.6

is computing I(i, ji, dt), the indicator function that filters out false hard negatives. We use hash-

based filtering to efficiently remove false negatives from the hard negative mining step to implement

I(i, ji). First, we create a matrix P that contains the indices of positive pairs (i, j) as well as an

additional matrix Pdt that contains all pairs of indices that fall within a certain distance threshold

dt. Next, we find the hardest negatives for all positive pairs and filter out the hardest negatives that

fall within the vicinity of positive pairs by comparing the hash keys. Filtering out hash keys can be

implemented efficiently using two sets of sorted lists.

CHAPTER 6. GEOMETRIC FEATURES 92

6.6 Experiments

We validate our fully-convolutional geometric features (FCGF) on both indoor and outdoor datasets.

We show that FCGF outperform all state-of-the-art methods in both accuracy and speed, and

analyze the proposed hardest-contrastive and hardest-triplet losses.

6.6.1 Datasets and Training

For indoor data, we use the standard 3D Match dataset [36]. For outdoor experiments, we use the

KITTI odometry dataset [10]. We followed the official data split for 3D Match. For KITTI, we

use the odometry training set because it provides GPS ground truth. This training set contains 11

sequences, which we split into train/val/test sets as follows: sequence 0 to 5 for training, sequence 6

to 7 for validation, and sequence 8 to 10 for testing. For all LIDAR scans, we used the first scan that

is taken at least 10m apart within each sequence to create a pair. We found the GPS “ground truth”

to be very noisy and used the Iterative Closest Point algorithm (ICP) to refine the alignment. If

ICP fails or the number of overlapping voxels is less than 1k, we removed the pair from the dataset.

This procedure yielded 1358 pairs for training, 180 for validation, and 555 for testing.

We train the networks for 100 epochs using Stochastic Gradient Descent starting with learning

rate 0.1 with a Exponential learning rate schedule with γ = 0.99. We used batch size 4 for all

experiments and analysis. We applied data augmentation including random scaling ∈ [0.8, 1.2] to a

pair, and different random rotation augmentation ∈ [0◦, 360◦) along an arbitrary 3D direction for

both scans in a pair. We found rotation augmentation to be a simple (SO(3) multiplication) and

effective way to make FCGF invariant to relative camera pose change.

Since a sparse tensor is defined as a pair of coordinates and associated features, we tried to

use a few different features such as color and normal for input sparse tensor features. However,

the dataset was not diverse or large enough, even with data augmentation, to prevent the network

from overfitting when color was provided in the input. Also, as FCGF was trained to capture the

underlying geometry, using normal directions did not make a meaningful difference. In the end,

we create an input sparse tensor with coordinates from a scan and 1-vectors as features for all

experiments. However, we suspect that color could boost the performance if used with a large and

diverse dataset.

6.6.2 Evaluation Metrics

For the 3D Match benchmark, we use two standard metrics to measure the quality of features

under registration: feature-match recall and registration recall. For the outdoor dataset, we use the

Relative Translation Error and the Relative Rotation Error.

CHAPTER 6. GEOMETRIC FEATURES 93

Figure 6.4: Feature-match recall with respect to inlier ratio threshold τ2 (left) and inlier distance
accuracy tolerance τ1 (right). The vertical lines are τ2 = 0.05 (left) and τ1 = 0.1 (right), following [6,
7].

Feature-match recall. The feature-match recall [7] measures the percentage of fragment pairs

that can recover the pose with high confidence. Mathematically, it is

R =
1

M

M∑
s=1

1

([1

|Ωs|
∑

(i,j)∈Ωs

1
(
‖T∗xi − yj‖<τ1

)]
>τ2

)
(6.7)

where M is the number of fragment pairs, Ωs is a set of correspondences between a fragment pair s,

x and y are 3D coordinates from the first and second fragment, and T∗ ∈ SE(3) is the ground-truth

pose. τ1 = 0.1m is the inlier distance threshold and τ2 = 0.05 or 5% is the inlier recall threshold,

following [6, 7].

Registration recall. The feature-match recall measures the quality of feature under pairwise

registration. However, it does not measure the quality of feature when used within a reconstruction

system. Instead, the registration recall [1] takes a set of overlapping fragments with a ground-truth

pose and measures how many overlapping fragments a matching algorithm can correctly recover.

Specifically, the registration recall uses the following error metric between estimated fragments {i, j},
and corresponding pose estimation T̂i,j to define a true positive:

ERMSE =

√√√√ 1

Ω∗
∑

(x∗,y∗)∈Ω∗

‖T̂i,jx∗ − y∗‖2 (6.8)

where Ω∗ is a set of corresponding ground-truth pairs in fragments {i, j}, and x∗ and y∗ are the 3D

coordinates of the ground-truth pair. For fragments {i, j} with at least 30% overlap, the registration

is evaluated as a correct pair if ERMSE < 0.2m. As noted in several works [1, 7, 6, 17], recall is

more important than precision since it is possible to improve precision with better pruning.

CHAPTER 6. GEOMETRIC FEATURES 94

Relative translation and rotation error. The Relative Translation Error (RTE) and Relative

Rotation Error (RRE) measure the registration errors of features used for RANSAC. Thus, they

are indirect measures, but we follow Yew and Lee [34] for outdoor dataset evaluation. RTE and

RRE are defined as RTE=|T̂ − T ∗| where T̂ is the estimated translation after registration and

RRE=arccos((Tr(R̂TR∗) − 1)/2) where R̂ is the estimated rotation matrix and R∗ is the ground-

truth rotation matrix.

6.6.3 3D Match Benchmark

We compare FCGF with hand-crafted features and recent state-of-the-art methods on the 3DMatch

benchmark [36] using feature-match recall and registration recall.

Tab. 6.1 lists the feature-match recall for all methods at τ1 = 10cm and τ2 = 0.05 (following [6, 7]),

the feature dimension, and the feature extraction time. FCGF outperforms all hand-crafted features

and PointNet-based methods by a large margin and marginally outperforms a recent 3D-convolution-

based method [11]. FCGF is the fastest feature extraction method and is 600 times faster than [11].

Please refer to Fig. 6.1 for visualization of the performance and speed of each method, and Sec. 6.6.7

for more details on timing. Note that FCGF is 32-dimensional while most state-of-the-art methods

have higher dimensionality. Standard deviation (STD) of feature-match recall is computed across

room types following [11]. Fig. 6.4 shows the sensitivity of feature-match recall to the inlier distance

threshold τ1 and inlier recall threshold τ2.

Method
3DMatch with Rot. Aug. Feat. Time

FMR STD FMR STD Dim. (ms)

Spin [16] 0.227 0.114 0.227 0.121 153 0.133
SHOT [26] 0.238 0.109 0.234 0.095 352 0.279
FPFH [23] 0.359 0.134 0.364 0.136 33 0.032
USC [29] 0.400 0.125 - - 1980 3.712
PointNet [21] 0.471 0.127 - - 256 0.171
CGF [17] 0.582 0.142 0.585 0.140 32 1.463
3DMatch [36] 0.596 0.088 0.011 0.012 512 3.210
Folding [33] 0.613 0.087 0.023 0.010 512 0.352
PPFNet [7] 0.623 0.108 0.003 0.005 64 2.257
PPF-Fold [6] 0.718 0.105 0.731 0.104 512 0.794
DirectReg [8] 0.746 0.094 - - 512 0.794
CapsuleNet [37] 0.807 0.062 0.807 0.062 512 1.208
PerfectMatch [11] 0.947 0.027 0.949 0.024 32 5.515

Ours 0.952 0.029 0.953 0.033 32 0.009

Table 6.1: Feature-match recall at τ1 = 0.1, τ2 = 0.05 [6] on 3DMatch [33]. FMR and STD indicate
the Feature Match Recall and its standard deviation. Feat. Dim. indicates feature dimensionality
and Time is in milliseconds consumed per feature.

CHAPTER 6. GEOMETRIC FEATURES 95

Kitchen Hotel 1

Lab Study room

Figure 6.5: Color-coded features overlaid on selected fragment pairs. The 32-dimensional FCGF
features for each pair of point clouds are mapped to a scalar space using t-SNE [31] and colorized
with the Spectral color map.

Pair 1 Pair 2

Pair 3 Pair 4

Figure 6.6: Color-coded FCGF features for pairs of KITTI LIDAR scans that are 10m apart. FCGF
features from downsampled LIDAR scans are mapped to a scalar space using t-SNE [31] and colorized
with the Spectral color map.

Overall, FCGF has better registration recall and feature-match recall across different scenes, a

wide range of distance thresholds, and inlier recall thresholds. To visualize the general quality of

FCGF, we use t-SNE [31] to project all FCGFs in a pair of scans to a color-coded one-dimensional

space and visualize them in Fig. 6.5.

Rotation and translation invariance. One of the most important characteristics of good ge-

ometric features is rotation and translation invariance. Some of the baseline methods achieve this

by aligning 3D patches along the normal direction of a patch. Instead, FCGF learns the rotation

invariance through on-the-fly data augmentation (details in the supplement). Translation invariance

is an inherent property of a sparse tensor as the translation does not affect convolutions. Tab. 6.1

shows the feature-match recall of FCGF and other features on the augmented 3DMatch dataset [6].

CHAPTER 6. GEOMETRIC FEATURES 96

Feat. Dimensions 16 32 48 64

Feat. Match Recall (5cm) 0.9011 0.9242 0.9235 0.9343
STD (5cm) 0.0328 0.0439 0.0429 0.0365

Feat. Match Recall (2.5cm) 0.9412 0.9535 0.9489 OOM
STD (2.5cm) 0.0336 0.0334 0.0393 OOM

Table 6.2: Hardest-contrastive loss feature match recall with different feature dimensionality on
3DMatch. OOM denotes Out Of Memory under the same hyperparameters.

Hardest-Triple
Feature Match Recall STD

Num. HN / RT

1024 / 512 COLLAPSE
768 / 512 COLLAPSE
768 / 768 0.8866 0.0377
512 / 768 0.8935 0.0393
512 / 1024 0.9022 0.0399
128 / 2048 0.9087 0.0458
0 / 2048 0.7903 0.0494

Contrastive 0.7309 0.0245
Contrastive (norm.) 0.8493 0.0489

Triplet 0.7903 0.0494
Triplet (norm.) 0.6935 0.0446

Hardest-Contrastive 0.9344 0.0365

Table 6.3: Feature match recall of the hardest-triplet loss with various hardest-negative and random
triplet ratios (Hardest-Negative triplets (HN) and Random Triplets (RT) per a pair of scans with 5cm
voxel downsampling), contrastive, triplet, and hardest-contrastive loss. The hardest-contrastive loss
outperforms random triplets, hardest-triplet, and contrastive loss. ”norm.” denotes the normalized
feature.

Note that FCGF maintains similar performance on the augmented dataset without any explicit

mechanism.

6.6.4 Hardest-contrastive and Hardest-triplet Losses

We compare the traditional contrastive and triplet losses with the proposed hardest-contrastive and

hardest-triplet losses in Tab. 6.3. As the hardest-triplet loss tends to collapse easily, we varied the

number of hardest-negatives and random triplets per pair (increase proportionally to the batch size)

and reported the feature-match recall on Tab. 6.3.

For the contrastive loss, we use both normalized (denoted norm.) and unnormalized features.

We used L2 normalization to project features to the surface of a hypersphere and pass the gradient

from the loss through the normalization layer to train the network with normalization. For the

CHAPTER 6. GEOMETRIC FEATURES 97

Neg. margin Pos. margin Feature Match Recall STD

4 0.1 0.9169 0.0478
3 0.1 0.9206 0.0398
2 0.1 0.9344 0.0362
1.4 0.1 0.9242 0.0439
1 0.1 0.9249 0.0403
0.5 0.1 0.8832 0.0433

4 0.2 0.9158 0.0450
2 0.2 0.9110 0.0438
1 0.2 0.9116 0.0527
1 0.4 0.9013 0.0464

Table 6.4: Feature-match recall of FCGF (5cm voxel downsampling) on 3DMatch with various
positive margins mp and negative margins mn.

normalized features, we used positive margin 0.1, negative margin 1.4 (≈
√

2); for the unnormalized

features, positive margin 0.1 and negative margin 2. Similarly, we used both normalized (denoted

norm.) and unnormalized features for the random triplet loss. (Note that the hardest-negative triplet

with 0 hardest negatives becomes the random triplet.) However, for the random triplets with the

normalized feature, higher margins lead to performance degradation, and at margin 0.5, the random

triplets fail to achieve reasonable performance. For all triplets with unnormalized features, we use

the margin 1.4. Please refer to the supplement for an analysis of the margin for the hardest-triplet

loss.

Interestingly, as we increase the number of random triplets, feature-match recall also increases

(the top section of Tab. 6.3). However, if we remove the hardest negatives altogether, the perfor-

mance drops significantly (the row 0/2048). Surprisingly, we did not observe any degeneration for

the hardest-negative contrastive loss, which uses the same mining technique, and does not require

random negatives.

6.6.5 Effect of Margins for Hardest-contrastive

The hardest-contrastive loss in Eq. 6.5 requires two hyper-parameters: positive margin and negative

margin. We trained networks with various margins with 5cm voxel downsampling and report the

result in Tab. 6.4. In general, the ratio between negative margin and positive margin (mn/mp) plays

a significant role: the larger the ratio, the higher the performance. However, the absolute value of

the negative margin is also critical since 1/0.2 (negative margin / positive margin) has the same

ratio as 0.5/0.1, but 1/0.2 yields better results. Please refer to the supplement for an analysis of the

margin for the hardest-triplet loss.

CHAPTER 6. GEOMETRIC FEATURES 98

FPFH USC CGF 3DMatch PPFNet
Ours

[23] [29] [17] [36] [7]

Kitchen 0.36 0.52 0.72 0.85 0.90 0.93
Home 1 0.56 0.35 0.69 0.78 0.58 0.91
Home 2 0.43 0.47 0.46 0.61 0.57 0.71
Hotel 1 0.29 0.53 0.55 0.79 0.75 0.91
Hotel 2 0.36 0.20 0.49 0.59 0.68 0.87
Hotel 3 0.61 0.38 0.65 0.58 0.88 0.69
Study 0.31 0.46 0.48 0.63 0.68 0.75
Lab 0.31 0.49 0.42 0.51 0.62 0.80

Average 0.40 0.43 0.56 0.67 0.71 0.82

Table 6.5: Registration recall on 3DMatch [36].

DS voxel size RTE (cm) STD(cm) RRE(◦) STD(◦) Succ. rate

3DFeat [34] 25.9 26.2 0.57 0.46 95.97%

FCGF 20cm 4.881 5.338 0.170 0.175 97.83%
FCGF 25cm 6.066 8.730 0.213 0.291 98.56%
FCGF 30cm 6.466 6.067 0.228 0.229 98.92%
FCGF 35cm 6.978 5.332 0.254 0.240 98.92%
FCGF 40cm 8.025 5.935 0.273 0.251 98.92%

Table 6.6: Results on the KITTI dataset. Relative Translation Error (RTE) and Relative Rota-
tion Error (RRE) after RANSAC on FCGF trained with the hardest-contrastive loss with various
downsampling voxel sizes. Success if RTE < 2m and RRE < 5◦ [34].

Registration recall. We used the 3DMatch registration set [36] to evaluate the registration recall

of FCGF. The results are reported in Tab. 6.5. For all experiments, we used RANSAC [9] with early

termination [38].

6.6.6 Outdoor Experiment: KITTI

We trained FCGF on the KITTI registration dataset with various voxel-downsampling sizes and

report Relative Translation Error (RTE) and Relative Rotation Error (RRE) with RANSAC in

Tab. 6.6. Registration is considered successful if RTE < 2m and RRE < 5◦ (following [34]). Note

that the translation error and success rate increase as the voxel size increases. This is because a high-

resolution point cloud increases the specificity of the registration, which leads to lower translation

error. Fig. 6.6 visualizes the distribution and stability of the computed features on pairs of scans.

CHAPTER 6. GEOMETRIC FEATURES 99

6.6.7 Runtime

We compare the runtimes of all different methods on 3DMatch in Fig. 6.1 and Tab. 6.1. The

reported times include data preprocessing and feature extraction. We used an Intel i7 10-core

3.0GHz CPU (i7-6950) and an Nvidia Titan-X Pascal GPU to measure FCGF runtime. ([7, 6, 36]

used an Intel i7 8-core 3.2GHz CPU and an Nvidia Titan-X Pascal.) We ran other baselines on the

same workstation using PCL 1.8 [25] to test SHOT, USC, and Spin Image, and Open3D [38] to test

FPFH. The reported times include both data preprocessing and feature extraction. FCGF is about

87 times faster than PPF-FoldNet [6], 350 times faster than 3DMatch [36], and 600 times faster

than PerfectMatch [11]. We ascribe this speed to the fully-convolutional network that takes the

point cloud directly without heavy preprocessing such as creating a volumetric function or searching

neighboring points and grouping. On average, our approach takes about 0.164 seconds to extract

features for a single fragment on 3DMatch with 2.5cm voxel size. However, with batch processing,

the effective speed can be faster.

6.7 Conclusion

We presented fully-convolutional geometric features (FCGF): fast and compact metric features for

geometric correspondence. Experimentally, we showed that FCGF is more accurate and faster than

state-of-the-art methods. An interesting avenue for future work is to extend the FCGF methodology

to end-to-end registration.

Bibliography

[1] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust reconstruction of indoor scenes. In

CVPR, 2015.

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal convnets:

Minkowski convolutional neural networks. In CVPR, 2019.

[3] Christopher B Choy, JunYoung Gwak, Silvio Savarese, and Manmohan Chandraker. Universal

correspondence network. In NIPS, 2016.

[4] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias

Nießner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017.

[5] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object detection via region-based fully

convolutional networks. In NIPS, 2016.

[6] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPF-FoldNet: Unsupervised learning of rotation

invariant 3d local descriptors. In ECCV, 2018.

[7] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet: Global context aware local features

for robust 3d point matching. In CVPR, 2018.

[8] Haowen Deng, Tolga Birdal, and Slobodan Ilic. 3D local features for direct pairwise registration.

In CVPR, 2019.

[9] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commun. ACM, 1981.

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? The

KITTI vision benchmark suite. In CVPR, 2012.

[11] Zan Gojcic, Caifa Zhou, Jan Dirk Wegner, and Wieser Andreas. The perfect match: 3D point

cloud matching with smoothed densities. In CVPR, 2019.

[12] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D semantic segmentation

with submanifold sparse convolutional networks. CVPR, 2018.

[13] Y. Guo, M. Bennamoun, F. A. Sohel, M. Lu, J. Wan, and N. M. Kwok. A comprehensive

performance evaluation of 3d local feature descriptors. IJCV, 116(1), 2016.

100

BIBLIOGRAPHY 101

[14] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invari-

ant mapping. In CVPR, 2006.

[15] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person

re-identification. arXiv:1703.07737, 2017.

[16] A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in cluttered 3d

scenes. PAMI, 21(5), 1999.

[17] Marc Khoury, Qian-Yi Zhou, and Vladlen Koltun. Learning compact geometric features. In

ICCV, 2017.

[18] M. T. Law, N. Thome, and M. Cord. Quadruplet-wise image similarity learning. In ICCV,

2013.

[19] Jie Lin, Olivier Morere, Vijay Chandrasekhar, Antoine Veillard, and Hanlin Goh. Deephash:

Getting regularization, depth and fine-tuning right. arXiv:1501.04711, 2015.

[20] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic

segmentation. In CVPR, 2015.

[21] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning

on point sets for 3d classification and segmentation. In CVPR, 2017.

[22] Dario Rethage, Johanna Wald, Jurgen Sturm, Nassir Navab, and Federico Tombari. Fully-

convolutional point networks for large-scale point clouds. In ECCV, 2018.

[23] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH) for 3D registration.

In ICRA, 2009.

[24] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning point cloud views using persistent

feature histograms. In IROS, 2008.

[25] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In ICRA,

2011.

[26] S. Salti, F. Tombari, and L. di Stefano. SHOT: Unique signatures of histograms for surface and

texture description. Computer Vision and Image Understanding, 125, 2014.

[27] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In NIPS,

2016.

[28] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted

structured feature embedding. In CVPR, 2016.

[29] F. Tombari, S. Salti, and L. Di Stefano. Unique shape context for 3d data description. In ACM

Workshop on 3D Object Retrieval, 2010.

[30] Evgeniya Ustinova and Victor Lempitsky. Learning deep embeddings with histogram loss. In

NIPS, 2016.

BIBLIOGRAPHY 102

[31] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-SNE. JMLR,

2008.

[32] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning

fine-grained image similarity with deep ranking. In CVPR, 2014.

[33] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. FoldingNet: Interpretable unsupervised

learning on 3d point clouds. In CVPR, 2017.

[34] Zi Jian Yew and Gim Hee Lee. 3DFeat-Net: Weakly supervised local 3D features for point

cloud registration. In ECCV, 2018.

[35] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In

ICLR, 2016.

[36] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. 3Dmatch: Learning the

matching of local 3D geometry in range scans. In CVPR, 2017.

[37] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3D point capsule networks.

In CVPR, 2019.

[38] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data

processing. arXiv:1801.09847, 2018.

