
Chapter 7

High-dimensional Convolutional

Networks

7.1 Introduction

Finding structure in noisy data is a general problem that arises in many different disciplines. For

example, robust linear regression requires finding the dominant pattern (line, plane) in some given,

noisy data. 3D registration of point clouds requires the detection of erroneous correspondences [6].

Structure from motion (SfM) pipelines use verification based on prescribed geometric models to

filter wrong image matches [38]. Novel algorithms for the detection of geometric structures can thus

benefit many practical applications.

However, detecting geometric structures in noisy data is a hard problem. Data points that

belong to a structure frequently comprise only a small fraction of the total amount of points, while

the majority of the data points are outliers. Various algorithms and heuristics have been proposed

over the years to cope with noisy data [36, 9, 32, 39, 3, 14, 19, 20], but they are usually specific

to only a subset of the problems in this domain. Recent works have advocated for using deep

networks [46, 33, 49] to learn robust models to classify geometric structures from outliers. Deep

networks offer significant flexibility and the promise to replace hand-crafted algorithms and heuristics

that can directly be learned from data. However, due to the unstructured nature of the data in

geometric problems, existing works have considered such data as an unordered set, although they

are embedded in a metric space and follow geometric structures. Also, prior works heavily relied

on network structures that are composed of sequences of global pooling operations and multi-layer

perceptrons (MLPs) that lack the capacity to model the local spatial geometry [31, 47].

In this work, we introduce a novel type of deep convolutional network that can operate in higher

dimensions than merely 2D images or 3D volumes. Our network takes a sparse tensor as input
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and employs convolutions as the fundamental computation unit in the high-dimensional spaces.

The distinguishing property of our approach is that it is able to effectively leverage local neigh-

borhood relations together with global context even for high-dimensional data. Our network is

fully-convolutional, translation invariant, and integrates several best practices that have been suc-

cessfully applied to various image recognition problems [34, 16, 21].

To demonstrate the effectiveness and generality of our approach, we tackle various geometric

pattern recognition problems. We start with the basic problem of robust linear regression and simple

geometry detection in high-dimensional noisy data. We show that our network can distinguish inliers

from outliers in settings with extremely small signal-to-noise ratio as well as very high dimensions.

We then show that our network can be applied to the problem of finding inlier correspondences that

follow different geometric patterns and apply it to the filtering of correspondences between 3D scans

as well as image correspondences that are subject to epipolar constraints.

Our experimental evaluation shows that our convolutional network is able to reliably detect ge-

ometric patterns in high-dimensional data that is heavily contaminated by noise. It can operate in

regimes, where existing algorithms break down. Our approach significantly improves 3D registration

performance when combined with standard approaches for 3D point cloud alignment [37, 51, 6, 52].

We also tackle the high-dimensional geometric pattern recognition in image correspondences and

show that a high-dimensional convolutional network performs on par with state-of-the-art meth-

ods [46, 49]. All networks and training scripts are available at “https://github.com/chrischoy/HighDimConvNets.

7.2 Related Work

Robust model fitting. Fitting a geometric model to a set of observations that are contaminated

by outliers is a fundamental problem that frequently arises in computer vision and related fields.

The most widely used approach for robust geometric model fitting is RANdom SAmple Consensus

(RANSAC) [13]. Due to its fundamental importance, many variants and improvements of RANSAC

have been proposed over the years [36, 42, 9, 32, 23, 41, 39, 3].

Alternatively, algorithms for robust geometric model fitting are frequently derived using tech-

niques from robust statistics [50, 14, 19, 20], where outlier rejection is performed by equipping an

estimator with a cost function that is insensitive to gross outliers. While the resulting algorithms

are computationally efficient, they require careful initialization and optimization procedures in order

to not get stuck in poor local optima [51].

Another line of works proposes to find globally optimal solutions to the consensus maximization

problem [24, 45, 5]. However, these approaches are currently computationally too demanding for

many practical applications.

3D registration. Finding reliable correspondences between a pair of surfaces is an essential step

for 3D reconstruction [6, 10, 29, 12]. The problem has been conventionally framed as an energy
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minimization problem which can be solved using various techniques such as branch and bound [44],

Riemannian optimization [35], mixed-integer programming [22], robust error minimization [51], semi-

definite programming [26, 18], or random sampling [6].

Recently, the use of deep learning architectures for geometric registration tasks has received

increased attention. PointNets, which recognize global patterns, are the predominant network ar-

chitecture that are used for this problem [28, 30, 2].

We propose a high-dimensional convolutional network that can recognize not just global, but also

local patterns that are crucial for 3D registration which requires detecting a contiguous geometric

structure in a 6-dimensional space.

Image correspondence classification. Similar to the 3D registration problem, the design of

effective deep learning architectures to solve classic problems in multiple view geometry, image

matching, and camera localization is an active field of research.

Yi et al. [46] and Zhang et al. [49] pose essential matrix estimation as a correspondence inlier/out-

lier classification problems. Ranftl and Koltun [33] propose architectures for fundamental matrix

estimation. Brachmann and Rother [4] propose to learn a neural network that guides hypothesis

sampling in RANSAC for model fitting problems. Dang et al. [11] propose a numerically stable loss

function for essential matrix estimation.

All of the previous works employ variants of PointNets to classify inliers in an unordered set

of putative correspondences. These correspondences are embedded in a metric space and follow

geometric structures. However, point-wise multi-layered perceptrons lack the capacity to model the

spatial neighborhood of correspondences, which carry information of local geometry. In contrast,

we propose a network that directly leverages neighborhood relations defined in the high-dimensional

input space in every layer.

7.3 High-Dimensional Convolutional Networks

In this section, we briefly introduce the two main building blocks of our networks – generalized

sparse tensors and generalized convolutions – and high-dimensional convolutional neural networks.

7.3.1 Sparse Tensor and Convolution

A tensor is a multi-dimensional array that represents high-order data. AD-th order tensor T requires

D indices to uniquely access its element and we denote such indices or a coordinate as x = [x1, ..., xD]

and the element at the coordinate as T[x1, ..., xD] similar to how we access components in a matrix.

Likewise, a sparse tensor is a high-dimensional extension of a sparse matrix where the majority of
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the elements are 0, or concisely,

T[x1
i , x

2
i , · · · , xDi ] =

fi if (x1
i , x

2
i , · · · , xDi ) ∈ C

0 otherwise,
(7.1)

where C = {xi | xi ∈ ND,T[xi] 6= 0}Ni=0 is the set of coordinates with non-zero values, N is the

number of non-zero elements, and fi is the non-zero value at i-th coordinate. A sparse feature map

is a (D + 1)-th order tensor with fi ∈ RND+1 as we use the last dimension to denote the feature

dimension.

A sparse tensor has the constraint that xi ∈ ND. We extend the sparse tensor coordinates to

integer indices xi ∈ ZD and define T ∈ RℵD0 ×ND+1 where ℵ0 denotes the cardinality of the integer

space |Z| to define a generalized sparse tensor.

A convolution on this generalized sparse tensor can then be defined as a simple extension of the

generalized sparse convolution [7]:

fout
u =

∑
i∈ND(u)

Wif
in
u+i for u ∈ Cout, (7.2)

where Cout are the output locations that are predefined by the user and ND(u) defines a set of

neighbors of u which is defined by the shape of the convolution kernel. For example, if the convolution

kernel is rectangular with size K, the set of neighbor are all non-zero element of the sparse tensor

centered at u within the L∞-ball with diameter K.

7.3.2 Convolutional Networks

We design a high-dimensional fully-convolutional neural network for sparse tensors (sparse tensor

networks) based on generalized convolution [7, 8]. We use U-shaped networks [34] to capture large

receptive fields while maintaining the original resolution at the final layer. The network has residual

connections [16] within layers with the same resolution and across the network to speed up con-

vergence and to recover the lost spatial resolution in the last layer. The network architecture is

illustrated in Fig. 7.1.

To ensure computational efficiency in high dimensions, we use the cross-shape kernel [7] for all

convolutions. We denote the kernel size by K. The cross-shape kernel has non-zero weights only

for the K nearest neighbors along each axis which results in one weight parameter for the center

location and K weight parameters for each axis. Note that a cross-shaped kernel is similar to

separable convolution, where a full convolution is approximated by D one-dimensional convolutions

of size K. Both types of kernels are rank-1 approximations of the full hyper-cubic kernel KD, but

separable convolution requires KD matrix multiplications, whereas the cross-shape kernel requires

only (K − 1)D + 1 matrix multiplications.
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Figure 7.1: A generic U-shaped high-dimensional convolutional network architecture. The numbers
next the each block indicates kernel size, stride, and the number of channels. The strided convolutions
that reduce the resolution of activations are shifted upward to indicate different levels of resolution.

7.3.3 Implementation

We extend Choy et al. [7], which support arbitrary kernel shapes, to implement our high-dimensional

convolutional networks. To efficiently implement the sparse tensor networks, we need an efficient

data structure that can generate a new sparse tensor as well as find neighbors within the sparse

tensor. Choy et al. [7] use a hash table that is efficient for both insertion and search. We replaced

the hash table with a faster and more efficient variant [1]. In addition, as the neighbor search can be

run in parallel, we create an iterator function that can run in parallel with OpenMP [27] by dividing

the table into smaller parallelization blocks.

Lastly, U-shaped networks generate hierarchical feature maps that expand the receptive field and

allow larger context to the neurons. Choy et al. [7] use stride-K convolutions with kernel size ≥ K

to generate lower resolution hierarchical feature maps, but such implementation requires iterating

over at least KD elements within a hyper cubic kernel as the coordinates are stored in a hash table,

which results in O(NKD) complexity where N is the cardinality of input. Consequently, it becomes

infeasible to store the weights on GPU for high-dimensional spaces. Instead of strided convolutions,

we propose an efficient implementation of stride-K sum pooling layers with kernel size K [8]. Instead

of iterating over all possible neighbors, we iterates over all input coordinates and floors them down

to multiples of K, which require only O(N) complexity.

7.4 Geometric Pattern Recognition

We propose an approach based on a convolutional network to recognize geometric patterns in high-

dimensional space. Specifically, we classify each point xi in high-dimensional data X = {xi}Ni=0

either as an inlier or as an outlier. We start by validating our approach on synthetic datasets of

varying dimensions, before we show results on 3D registration and essential matrix estimation from

image correspondences.

For all experiments, we first quantize the input coordinates to create a sparse tensor of order

D + 1, where the last dimension denotes the feature channels. The network then predicts a logit

score for each non-zero element in the sparse tensor to indicate if a point is part of the geometric
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Table 7.1: High-dimensional pattern detection and linear regression: Mean Squared Error (MSE)
of the predicted line and F1 and the Average Precision (AP) of different methods. MSE: lower the
better, F1 and AP: higher the better

Qi et al. [31] Zaheer et al. [47] + BN + IN Yi et al. [46] Ours

Dim. Inlier Ratio MSE F1 AP (AUC) MSE F1 AP (AUC) MSE F1 AP (AUC) MSE F1 AP (AUC)

4 15.59% 1.337 0.025 0.164 0.014 0.845 0.904 1.42E-5 0.993 0.999 2.33E-5 0.998 0.999
8 5.54% 2.369 0.022 0.065 0.005 0.865 0.975 2.46E-5 0.996 0.999 1.64E-5 0.999 0.999
16 2.75% 3.854 0.012 0.034 0.189 0.481 0.747 0.145 0.742 0.956 3.39E-5 0.999 0.999
24 0.40% 5.372 0.021 0.011 0.201 0.192 0.644 0.842 0.595 0.662 5.34E-5 0.994 0.996
32 0.07% 6.715 0.012 6.71E-5 2.513 0.010 0.327 - 0.0 0.052 0.010 0.669 0.689

Table 7.2: High-dimensional pattern detection and subspace detection: F1 and the Average Precision
(AP) of different methods. F1 and AP: higher the better

Qi et al. [31] Zaheer et al. [47] + BN + IN Yi et al. [46] Ours

Dim. Inlier Ratio F1 AP (AUC) F1 AP (AUC) F1 AP (AUC) F1 AP (AUC)

4 29.96% 0.0 0.315 0.980 0.996 0.993 0.999 0.991 0.998
8 8.07% 0.0 0.088 0.985 0.999 0.990 0.999 0.998 0.999
16 0.34% 0.0 0.004 0.155 0.299 0.182 0.359 0.951 0.961
24 0.01% 0.0 1.61E-4 0.032 0.133 0.0 0.081 0.304 0.346
32 4.64E-3% 0.0 5.56E-5 0.0 0.221 0.0 0.023 0.138 0.240

Qi et al. [31] Zaheer et al. [47] + BN Yi et al. [46] Ours

Figure 7.2: 8-dimensional linear regression projected to a 2-dimensional plane for visualization.
Black dots are noise and blue dots are samples from a 8-dimensional line. The dotted red line is the
prediction using each method. The signal-to-noise ratio is merely 3.83%.

pattern or if it is an outlier.

7.4.1 Linear Regression

We first test the capabilities of our fully-convolutional networks on simple high-dimensional linear

regression problems. Our dataset consists of a large amount of noise uniformly sampled from the

D-dimensional space and a small number of samples from a line with Gaussian noise. Thus, the

number of noise increases exponentially to the dimension O(LD) and the number of inliers increases

sublinearly O(
√
LD) where L is the length of the space. We put a detailed experiment setup in the

supplementary materials. The network predicts a likelihood score for each non-zero element in the

input sparse tensor and we threshold inliers with probability ≥ 0.5. We estimate the line equation

from the predicted inliers using the unweighted least square method.

We use different PointNet variants as the baselines for this experiment [31, 47, 46]. For Zaheer et
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Precision Recall F1

Figure 7.3: 32-dimensional linear regression: we plot the running mean and standard deviation of
precision, recall and F1 score on the validation set after each epoch. Compared with other networks,
the convolutional network converges faster due to the skip connections across U-network structure
and convolution.

al. [47], we were not able to get reasonable results with the network architecture proposed in the

paper. We thus augmented the architecture with batch normalization and instance normalization

layers after each linear transformation similar to Yi et al. [46], which boosted performance signifi-

cantly. For all experiments and networks, we use the cross-entropy loss. where P and N denote the

set of inliers and outliers, respectively. We fixed all training hyperparameters, including loss, batch

size, the optimization method, learning rate, and the learning rate scheduler for all baselines and

our approach.

We use three metrics to analyze the performance of the networks: Mean Squared Error (MSE),

F1 score, and the Average Precision (AP). For the MSE, we estimate the line equation with the

Least Squares to fit the line to the inliers. The second metric is the F1-score, the harmonic mean

of precision and recall. In many problems, F1-score is the direct indicator of the performance of

a classifier, and we also found a strong correlation between F1-score and the mean squared error

as well. The final metric we used is the average precision (AP) that measures the area under the

precision-recall curve. We report the results in Tab. 7.1 and visualize qualitative examples in Fig. 7.2.

Note that Tab 7.1 shows the inlier ratio to indicate the difficulty of each task.

In a second experiment, we create another synthetic dataset where the inlier pattern is sampled

from a plane spanned by 2 vectors {c1v1 + c2v2 + c | c1, c2 ∈ R}. The 2 basis vectors are sample

uniformly from the D-dimensional unit hypercube. We use the same training procedure for both

baselines and our network and report the results in Tab. 7.2.

We found that the convolutional network is more robust to noise in high-dimensional spaces

for linear regression than the variants of PointNet since convolutions and hierarchical feature maps

can effectively use the geometric data and find spatially local patterns. In addition, we found that

training the convolutional network converges very fast, as shown in Fig. 7.3, which is a further

indicator that the architecture can effectively leverage the structure of the data.
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7.4.2 3D Registration

A typical 3D registration pipeline consists of 1) feature extraction, 2) feature matching, 3) match

filtering, 4) global registration. In this section, we show that in the match filtering stage the correct

(inlier) correspondences form a 6-dimensional geometric structure and extend our simple geometric

pattern recognition networks to filtering of putative 3D matches.

Let X be a set of points sample from 3D geometry, or 3D scanned points, X = {xi | xi ∈ R3}Ni=1,

and X ′ be a subset of X that went through a rigid transformation T , X ′ = {T (x) | x ∈ S,S ⊆ X},
i.e. a 3D scan from a different perspective that has an overlap with X . We denote a correspondence

between points xi ∈ X and x′j ∈ X ′ as xi ↔ x′j . When we form an ordered pair (xi,x
′
j) ∈ R6,

the ground truth correspondences satisfy T (x) = x′ along the common 3D geometry S whereas an

incorrect correspondence implies T (x) 6= x′. Thus, the geometry (x,x′) ∈ R6 or (x, T (x)) for x ∈ S
forms a surface in 6-dimensional space.

We thus can use our convolutional neural network to segment the 6-dimensional hypersurface

into inlier and outlier correspondences by estimating the likelihood that each correspondence is an

inlier. We use the likelihood to filter out outliers from putative correspondences.

Network. We use Yi et al. [46] and the 6-dimensional U-shaped convolutional network from

Sec. 7.4.1 for this experiment. As the dimension is manageable, we use hypercubic kernels. The net-

work takes a order-6 sparse tensor whose coordinates are discretized correspondences (xi,x
′
j) ∈ R6.

We discretize the coordinates with the voxel size used to extract features. Our baseline Yi et al. [46]

takes dimensionless mean-centered correspondences without discretization. We train the networks

to predict the inlier probability of each correspondence with the balanced cross entropy loss.

Dataset. We use the 3DMatch benchmark [48] for this experiment. The 3DMatch dataset is a

composition of a variety of 3D scan datasets [48, 15, 43] and thus covers a wide range of scenes

and different types of 3D cameras. We integrate RGB-D images to form fragments of the scenes

following [48]. During the training, we randomly rotate each scene on-the-fly to augment the dataset.

We use one of the most widely used hand-designed features, FPFH [37] to compute correspondences.

Note, however, that our pipeline is agnostic to the choice of feature and can also be used with the

latest learned features [8].

We follow the standard procedures in the 3D registration literature to generate putative corre-

spondence. First, since 3D scans often exhibit irregular densities, we down-sample the input point

clouds in a voxel grid to produce a regular point point cloud. We use voxel sizes of 2.5cm and

5cm for our experiments. Next, we compute FPFH features and find the nearest neighbor for each

point in features space to form putatitive correspondences. The correspondences obtained from this

procedure often exhibit a very low inlier ratio, as low as 0.87% with 2.5cm voxel. Among these

correspondences, we regard x ↔ x′ as an inlier if it satisfies ‖T(x̂) − x̂′‖2 < τ and all others as

outliers. We set τ to be two times the voxel downsampling size.
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Table 7.3: Pairwise registration with FPFH [37] on 3DMatch test scenes with 2.5cm downsampling.
Translation Error (TE), Rotation Error (RE), success rate. The pairwise registration is successful
if TE < 30cm and RE < 15◦.

FPFH + FGR FPFH + Ours + FGR FPFH + RANSAC FPFH + Ours + RANSAC
Inlier Ratio TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate

Kitchen 1.62% 10.98 4.99 37.15 5.68 2.21 65.61 6.25 2.17 44.47 5.90 1.98 69.57
Home 1 2.71% 11.12 4.40 45.51 6.52 2.08 80.77 7.07 2.19 61.54 6.00 1.87 80.13
Home 2 2.83% 9.61 3.83 36.54 7.13 2.56 64.42 6.47 2.40 50.00 7.86 2.56 69.71
Hotel 1 1.35% 12.31 5.09 33.19 7.95 2.65 76.11 7.48 2.75 48.67 7.38 2.38 80.09
Hotel 2 1.54% 12.27 5.22 25.00 7.86 2.56 69.23 9.54 3.18 47.12 6.40 2.25 70.19
Hotel 3 1.59% 13.52 7.04 27.78 5.39 1.99 72.22 5.91 2.46 59.26 5.85 2.36 81.48
Study 0.87% 16.10 6.01 16.78 9.61 2.64 53.42 10.05 3.01 30.48 8.51 2.23 56.16
Lab 1.59% 10.48 4.80 42.86 7.69 2.44 61.04 8.01 2.31 45.45 6.64 2.12 68.83

Average 12.05 5.17 33.10 7.23 2.39 67.85 7.60 2.56 48.37 6.82 2.22 72.02

Figure 7.4: The success rate on the 3DMatch benchmark [48] with different voxel sizes: 2.5cm (top)
and 5cm (bottom).

Table 7.4: Pairwise registration with FPFH [37] on 3DMatch test scenes with 5cm downsampling.
Translation Error (TE), Rotation Error (RE), Recall in percent. The pairwise registration is suc-
cessful if TE < 30cm and RE < 15◦. The time excludes the feature extraction.

FPFH + FGR FPFH + Yi et al. [46] + FGR FPFH + Yi et al. [46] + RANSAC FPFH + Ours + FGR
SNR TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate

Kitchen 4.90% 9.32 3.92 44.86 8.06 3.36 55.53 9.10 3.65 57.71 6.07 2.46 68.97
Home 1 7.50% 9.13 3.53 51.92 8.76 3.23 64.10 9.28 2.99 67.31 7.93 2.59 74.36
Home 2 6.65% 9.02 3.58 36.54 7.96 3.13 45.19 10.02 3.71 53.85 7.99 3.23 57.69
Hotel 1 5.22% 10.20 3.86 46.02 9.14 3.46 57.52 11.25 3.80 61.95 8.71 2.90 76.11
Hotel 2 4.75% 10.69 4.82 35.58 9.74 3.82 50.00 11.06 4.52 56.73 8.18 2.82 70.19
Hotel 3 5.20% 13.10 4.69 46.30 10.36 3.86 57.41 10.59 4.05 68.52 6.57 2.63 74.07
Study 3.83% 14.20 4.74 27.40 12.95 4.01 37.67 12.88 4.09 48.63 11.23 3.12 60.62
Lab 4.98% 9.33 3.60 46.75 7.51 3.26 49.35 8.85 2.94 50.65 6.45 2.04 50.65

Average 10.62 4.09 41.92 9.31 3.52 52.10 10.38 3.72 58.17 7.89 2.72 66.58
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Kitchen Bedroom

Livingroom Study

Figure 7.5: Visualization of color-coded correspondences before and after the hyper-surface recog-
nition (Sec. 7.4.2). For each pair, we visualize 100 random correspondences on the left and another
100 random correspondences after the hyper plane detection with probability > 0.5. Red lines are
outlier correspondences and blue lines are inlier correpondences. On the bottom right pair, there
are two identical chairs. The average inlier ratio is 1.76%.

Finally, we use a registration method to convert the filtered correspondences into the final reg-

istration result. We show results we two different registration methods. The first is Fast Global

Registration [51], which minimizes a robust error metric. The second method is a robust variant [52]

of RANSAC [13].

Evaluation. We use three standard metrics to evaluate the performance of our network: rotation

error, translation error, and success rate. The rotation error measures the absolute angular deviation

from the ground truth rotation arccos Tr(R̂TR)−1
2 . Similarly, the translation error measures the

deviation of the translation ‖t̂ − t‖2. When we report these metrics, we exclude registrations that

exceed a threshold following [8] since the registration methods [51, 13] return stochastic results if

they fail to register an input pair. Finally, the success rate is the ratio of successful registration

that has rotation error and translation error below a certain threshold, i.e. if either rotation or

translation error exceeds the respective threshold, the registration is considered a failure. For all

experiments, we use a rotation error of 15 degrees and a translation error 20cm as the thresholds.

Tab. 7.3 shows the 3D registration pipelines with and without our network to filter the outliers.

Note that for FGR [51], we observe a considerable improvement with our network since FGR assume
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more accurate correspondences as inputs. The improvement is smaller with RANSAC as it is more

robust to a large amount of outlier. Although the inlier ratio is as low as 1% for many 3D scene

pairs, out network generates very accurate predictions. Similar to the linear regression experiments in

Fig. 7.3, we find that the network converges very quickly. We compare the improvement with respect

to Yi et al. [46] in Tab. 7.4. We also study the robustness of the 6-dimensional convolutional network

on the voxel size in Fig. 7.4 and find that the convolutional network imporoves the registration success

rate significantly even for higher inlier ratio with 5cm voxels. Qualitatively, the network filters out

outliers very accurately with even under the extreme level of noise (Fig. 7.5).

7.4.3 Filtering Image Correspondences

Table 7.5: Image matching evaluation with YFCC100M dataset.

LMeDs [36] MLESAC [42] Yi et al. [46] Zhang et al. [49] Ours
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Buckingham 0.213 0.178 0.194 0.294 0.299 0.297 0.497 0.772 0.605 0.535 0.804 0.642 0.611 0.835 0.705
Notre dame 0.335 0.197 0.248 0.489 0.422 0.453 0.581 0.894 0.705 0.679 0.901 0.774 0.721 0.929 0.812
Reichtag 0.380 0.217 0.276 0.573 0.441 0.498 0.747 0.877 0.807 0.808 0.878 0.842 0.769 0.897 0.827
Sacre coeur 0.203 0.104 0.137 0.418 0.292 0.344 0.658 0.871 0.750 0.724 0.902 0.803 0.718 0.932 0.811

Average 0.283 0.174 0.214 0.444 0.364 0.398 0.621 0.854 0.717 0.686 0.871 0.765 0.704 0.898 0.789

In this section, we apply the high-dimensional convolutional network to the task of image corre-

spondence inlier detection. In the projective space P2, an inlier correspondence u↔ u′ must satisfy

u′>Eu = 0, where E is the essential matrix and u denotes the normalized homogeneous coordinate

u = K−1x , x is the homogeneous image coordinate, and K is the camera intrinsic matrix. When we

expand u′>Eu = 0, we get u′1Au1 +u′2Bu1 +u′1Cu2 +u′2Du2 +Eu′1 +Fu′2 +Gu1 +Hu2 + I = 0,

which is a quadrivariate quadratic function. If there is a real valued solution, there are infinitely

many solutions that form either an ellipse (sphere), a parablola, or a hyperbola. These are known

as conic sections. Thus a set of ground truth image correspondences will form a hyper conic sec-

tion in a 4-dimensional space. We use a convolutional network to predict the likelihood of each

correspondence being an inlier.

Network. We convert a set of putative image correspondences into an order-5 sparse tensor with 4

spatial dimensions and vectorized features. The non-zero coordinates are defined at the discretized

concatenated normalized image coordinates u which defines a consistent metric system which is

invariant to varying camera intrinsics used in the dataset. The features are concatenated normalized

coordinates. We use a few variants of U-shaped convolutional networks and state-of-the-art baselines

for this task. The loss for all networks is the balanced cross entropy.

Dataset: YFCC100M. We use a large-scale photo-tourism dataset YFCC100M [40] for the ex-

periment. The dataset contains 100M Flicker images of tourist hot-spots with metadata, which is

curated into 72 locations with camera extrinsics estimated using SfM [17].
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Figure 7.6: Matching results using Yi et al. [46] (top), Zhang et al. [49] (middle) and ours (bottom).
Correspondences are colored as green if their symmetric epipolar distance is lower than 0.01.

We follow Zhang et al. [49] to generate the dataset and use 68 locations for training and the

others for testing. We filtered any image pairs that have fewer than a specific number of overlapping

3D points from SfM to guarantee there is some overlap between images.

We use SIFT [25] features on to create correspondences and use the ratio-test to filter out noisy

correspondences. Since the dataset only provides the camera parameters, we label a correspondence

to be an inlier if the symmetric epipolar distance is below a certain threshold:( r√
l21 + l22

+
r√

l′21 + l′22

)
< τ, (7.3)

where l = u′>F, l′ = Fu>, r = u′>Fu.

Evaluation. We use precision, recall, and F1-score to evaluate correspondence classification ac-

curacy. We used τ = 0.01 for the distance threshold following Yi et al. [46] and Zhang et al. [49]

and classified a correspondence as an inlier if the estimated confidence is greater than 0.5. We use
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the same hyper-parameters to train the baseline and ours and report the quantitative results in

Tab. 7.5 and qualitative results on Fig. 7.6. We observed that our approach did not outperform

the PointNet variants [46, 49] by a large margin. We attribute this to the sparse nature of SIFT

keypoints. Unlike FPFH, where we densely sample keypoints, SIFT features are sampled only at

sparse keypoints. This leads to fewer neighbors in a high-dimensional space, which consequently can

lead to a degeneration of the convolution to a simple multi-layer perceptron.

7.5 Conclusion

Many interesting problems in computer vision involve finding geometric patterns in high-dimensional

spaces. In this work, we propose high-dimensional convolutional networks for geometric pattern

recognition. We validate it with linear regression, 6-dimensional hyper-surface detection for 3D

registration, and 4-dimensional hyper-conic section detection for image correspondences. We will

further analyze the network architectures, hyper-parameters, and conditions in which the high-

dimensional convolutional network succeeds in the follow-up work.
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