
Chapter 8

Global Registration

8.1 Introduction

Registering a set of 3D scans or point clouds has been studied extensively for reconstruction, track-

ing, pose estimation, and 3D object detection [27, 5, 25]. Thus, many methods have been proposed

to improve the accuracy of one or more components required for 3D registration, such as fea-

tures [18, 9, 33, 7], pose optimization [30, 38, 20, 43], and recently, end-to-end feature learning and

registration [33, 2].

Recent end-to-end registration networks have advantages in many areas where some traditional

registration pipelines fail due to the low accuracy of feature matching. However, these end-to-end

approaches have a few drawbacks. First, PointNet-based globally pooled features reduce the spatial

resolution [2] and thus decrease the final registration accuracy. Second, strong assumptions on the

distribution of points and correspondences [33] do not hold for registering 3D scans with partial

overlap or visibility.

In this work, we resolve the drawbacks of the previous works by proposing three modules that

are essential for robust and accurate global registration: a 6D convolutional neural network for cor-

respondence confidence estimation; a Weighted Procrustes loss for backprop-able robust registration

solvers; and a robust optimizer in SE(3) for fine-tuning the registration. We validate them on the

tasks of real-world pairwise registration and large scale scene reconstruction.

The first component is a 6D convolutional neural network that estimates inlier probability and

captures the geometry of the 3D correspondences. In 2D registration, Yi et al. [39] and Ranftl

and Koltun [26] show that stacked (u, v) coordinates can be regarded as features to estimate the

confidence of correspondences through multi-layer perceptrons. Similarly, Dias et al. [23] propose

a network for 3D registration under an artificial setup where they use the ground truth pose to

preprocess correspondences. However, on a realistic setup without groundtruth for the test, this

network suffers from severe label imbalance and fails. Instead, we utilize a series of convolutions to
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Figure 8.1: Registration results on the 3DMatch benchmark [40]. Two inputs are colored by blue
and yellow respectively. Our method succeeds on challenging pairs while RANSAC [27], FGR [43],
and DCP [33] all fail (left), and achieves finer alignment results on easier pairs (right).

process the 6D structure formed by correspondences for robust correspondence classification.

The second component is a differentiable Weighted Procrustes solver. Procrustes analysis [12]
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minimizes the mean squared distance between correspondences. In particular, there exists a closed-

form solution of Procrustes analysis between rigid objects in SE(3). Wang et al. [33] incorporate

Procrustes analysis as a part of end-to-end training by predicting the corresponding 3D points

in another 3D input. However, such training requires strong assumptions that fail in many real-

world 3D scans. Instead, we approach this problem as a confidence prediction of correspondences

and propose a differentiable Weighted Procrustes analysis. This change allows us to 1) reliably filter

noisy correspondences; 2) handle partially observable scans with a small overlap like scans in Fig. 8.1;

and 3) use the pipeline with non-differentiable features such as hand-crafted features [27, 32, 29]

and deep features [9, 7].

Finally, we propose a robust optimization module to fine-tune the final registration prediction.

The module can use any differentiable robust loss which we minimize with gradient descent on the

continuous SE(3) representation space [45]. The final optimization is fast since it does not require a

neighbor search per iteration [41].

Experimentally, we use real-world datasets [40, 6, 14, 24] to analyze the performance of our

modules for pairwise and multi-way registration. We show that our modules are robust and accurate

yet efficient compared with classical global registration algorithms [43, 27, 38] as well as recent end-

to-end methods [23, 33, 2].

8.2 Related Work

We divide the related works of global registration into three categories: a) point-wise correspondence;

b) outlier rejection; c) pose-optimization. Most studies work on one or more of these three categories

to improve the global registration accuracy.

Geometric correspondence features. The first step in 3D registration is feature extraction that

projects local/global geometry into a feature space that can be used for correspondence search, or

global registration.

The first family of 3D features includes hand-crafted point-wise 3D features that capture local

geometry [16, 29, 32, 28, 27] with histograms of pairwise or high-order properties between points.

Recently, deep features have replaced many of these hand-crafted features. These features can be

mainly categorized into PointNet-based [10, 9, 42] and ConvNet-based [40, 11, 7].

In this work, we do not make a clear distinction on the specific choice of features as the modules

we propose can be applied on top of all these features including non-differentiable hand-crafted

features.

Outlier rejection. In many cases, the registration step takes a set of correspondences as an

input. These correspondences are generated by matching either learned or hand-crafted features,

and usually suffer from noise and outliers. Various methods have been proposed to handle the

problem. One of the most widely used family of registration methods is random sample consensus



CHAPTER 8. GLOBAL REGISTRATION 123

(RANSAC) [30, 1, 27, 22, 15], while another family utilizes branch-and-bound [38]. These methods

are more accurate, but suffer from slow run-time since the computational cost increases rapidly as

the signal-to-noise ratio decreases. The last family of methods adopts robust loss functions [43, 4]

to reject outliers during optimization. While being faster than RANSAC-based methods, they still

require proper filtering of the initial correspondence candidates, and thus are less stable on noisy

data.

In this work, we use a convolutional neural network to find the 3D structure within the corre-

spondences for outlier rejection or confidence estimation. This requires one feed-forward step and

thus avoids iterative random sampling.

Pose optimization. Pose optimization is the final stage that minimizes loss over filtered correspon-

dences. Iterative Closest Points (ICP) [3] and Fast Global Registration (FGR) [43] use a quadratic

loss function with second-order optimization to refine poses. Maken et al. [21] propose to accelerate

this process by stochastic gradient descent.

Recently, end-to-end frameworks are proposed combining feature learning and pose optimization

for CAD model registration. Aoki et al. [2] combine PointNet global features with pose optimiza-

tion [20]. Wang et al. [33, 34] connect the Procrustes method with graph net features.

In this work, we propose to finely decouple the correspondence search and registration in end-to-

end registration into multiple stages: correspondence search, correspondence confidence prediction,

and Weighted Procrustes for registration. With these changes, we can use arbitrary features for

correspondence matching and handle noisy correspondences better. Thus, the proposed modules

improve the overall performance of the model and can register challenging real-world scenes with

small overlaps.

8.3 Deep Global Registration

Typical 3D reconstruction systems take a sequence of partial 3D scans as inputs and recover a

complete 3D model of the scene. These scans are partial observations or fragments of a scene, as

shown in Fig. 8.1. In order to reconstruct the scene, we have to align these fragments with each

other accurately. Thus, pair-wise registration serves as a critical step of reconstruction.

Pair-wise registration starts with mapping the local geometry into point-wise features for corre-

spondence search. We then find feature correspondences globally to avoid local minima. Next, we

predict the inlier probability of a correspondence. For this, we propose a novel 6D convolutional net-

work to capture the high-dimensional structure of correspondences and predict confidence. Finally,

we propose a Weighted Procrustes method to align 3D scans given correspondences and associated

confidence, and refine the result by optimizing a robust loss function.

Before we discuss the details, we first define notations that will be used throughout the paper.

We define a query point cloud with Nx points as X = [x1, ...,xNx
] and a reference point cloud with
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Ny points as Y = [y1, ...,yNy ] where xi,yj ∈ R3 . Also, we denote a correspondence as xi ↔ yj or

more succinctly (i, j).

8.3.1 Feature Extraction

The first step in registration is the feature extraction stage that converts the local/global geometry to

a metric feature vector space for the nearest neighbor search. Although our registration network can

incorporate arbitrary features, we use the dense Fully Convolutional Geometric Features (FCGF) [7]

to capture the geometry of the input more accurately. The dimension of the convolutional features

can be as compact as 16 to 32, which also makes it ideal for fast nearest neighbor search in the

feature space.

8.3.2 Correspondence Confidence Prediction

Given the features Fx and Fy of two 3D scans, we use the nearest neighbors in the feature space

to generate correspondences. This procedure is deterministic and discrete, and therefore can be

hand-crafted to filter noisy correspondences with ratio or reciprocity test. However, we learn this

heuristic filtering process through a 6-dimensional convolutional network and find the underlying

structure in 6D space concatenated by 3D correspondence candidates.

To understand this better, we first use a 1-dimensional analogy and later generalize it to the

3-dimensional space. Let A be a set of 1-dimensional points A = {0, 1, 2, 3, 4} and B be another set

of points B = {10, 11, 12, 13, 14} that is a translation of A such that B = {ai+10|ai ∈ A}. If an algo-

rithm returns a set of possible correspondences {(0, 10), (1, 11), (2, 12), (3, 13), (4, 14), (0, 14), (4, 10)},
then the set of correct correspondences (inliers) will form a line (first 5 pairs), whereas incorrect

correspondences (outliers) will form random noise outside the line (last 2 pairs). If we extend this to

3D space, when we concatenate the coordinates of the correspondences xi ↔ yj as [xTi ,y
T
j ]T ∈ R6,

the inliers will form a smooth 6D surface that follows the geometry of the input. Meanwhile, the

outliers will be scattered and appear as random noise outside the surface. Thus, to capture the

geometry of this 6D structure better, we use a 6D convolutional network to predict the confidence

of each correspondence.

Note that the convolution is translation invariant, thus our 6D convolutional network will gen-

erate the same output regardless of the absolute position of inputs in SE(3). We use the similar

network architecture proposed in [7] to create a 6D sparse convolutional network with skip connec-

tions within the same tensor stride across the network. During training, we use binary cross-entropy

loss between the prediction and the ground truth correspondences to optimize the network param-

eters. The visualization of the network is in Fig. 8.2.
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Figure 8.2: The 6-dimensional convolutional network architecture for inlier confidence prediction
(Sec. 8.3.2). The network has a U-net structure with residual blocks between strided convolutions.
Best viewed on the screen.

8.3.3 Weighted Procrustes for SE(3)

The confidence prediction from the previous module can be used to weigh the importance of cor-

respondences. Given binary predictions, we can use the Procrustes method to minimize the mean

squared error between corresponding points. However, this procedure is not differentiable and is sen-

sitive to noise. Instead, Wang et al. [33] propose to differentiate the weighted sum of the predicted

location of points, which implicitly assumes that there exists at least one point that corresponds to

a point within the convex hull of the input. This assumption does not hold for many real-world 3D

scans due to self-occlusion, perspective changes, etc. Instead, we propose a Weighted Procrustes

method to handle noisy correspondences and pass gradients through the weights of correspondences

rather than the predicted positions.

Procrustes method [12] minimizes the mean squared error between corresponding points 1
N

∑
‖xi−

yj‖2. Similarly, a Weighted Procrustes analysis minimizes the weighted mean squared error

e2 = e2(R, t; w, X, Y ) (8.1)

=
∑
i

w̃i(yIi − (Rxi + t))2 (8.2)

= Tr
(
(Y −RX − t1T )W (Y −RX − t1T )T

)
, (8.3)

where 1 = (1, ..., 1)T , X = [x1, ...,xn], Y = [yI1 , ...,yIn ]. I is the permutation that defines the

correspondences xi ↔ yIi . w = [w1, · · · , wn] is the input weight vector predicted by the previous

module, w̃ = [w̃1, · · · , w̃n] , φ(w)
||φ(w)||1 denotes the normalized weight after a non-linear transforma-

tion φ that performs prefiltering, and W = diag(w̃) forms the diagonal weight matrix. We now

prove that there exists a closed form solution of arg minR,t e
2.

Theorem 1 : The R and t that minimize the squared error e2(R, t) =
∑
i wi(yj−Rxi− t)2 are t̂ =

(Y −RX)W1 and R̂ = USV T where UΣV T = SVD(Σxy), Σxy = Y KWKXT , K = I −
√

w̃
√

w̃
T

,

and S = diag (1, · · · , 1, det(U)det(V )).



CHAPTER 8. GLOBAL REGISTRATION 126

Proof. First, we differentiate e2 w.r.t. t and equates the partial derivative to 0.

∂

∂t
e2 =

∂

∂t

∑
i

w̃i(yi −Rxi − t) (8.4)

= −2

(∑
i

w̃iyi −
∑
i

w̃iRxi −
∑
i

w̃it

)
= 0 (8.5)

Thus, t̂ = (Y − RX)W1. Next, we substitute X = KX + X
√

w̃
√

w̃
T

on Eq. 8.3 and do the same

for Y .

e2 = Tr
(
(Y −RX − t1T )W (Y −RX − t1T )T

)
(8.6)

= Tr
(
(Y K −RXK +A)W (Y K −RXK +A)T

)
= Tr((Y K −RXK)W (Y K −RXK)T ) (8.7)

= Tr(Y KWKTY T ) + Tr(RXKWKTXTRR)− 2Tr(Y KWKTXTRT ) (8.8)

where A = Y
√

w̃
√

w̃
T −RX

√
w̃
√

w̃
T −t1T . We used the fact that W11T =

√
w̃
√

w̃
T

. To minimize

the the weighted squared error, we have to maximize the last negative term.

max
R

Tr(Y KWKTXTRT ) =
∑
i

σi(Y KWKTXT ) (8.9)

where σi(A) is the i-th largest singular value of the matrix A. Thus, the maximum of the above

equation occurs when R = USV T where UΣV T = SVD(Σxy), Σxy = Y KWKXT and S =

diag (1, · · · , 1,det(U)det(V )). The last det(U)det(V ) is either +1 or -1 depending on the direc-

tion of the orthonomal basis. �

We can easily extend the above theorem to incorporate a scaling factor c ∈ R+ for the tasks like

scan to CAD registration, but in this paper we assume that real-world scans have the same scale,

which is true for most 3D sensors.

Weighted Procrustes generates rotation R̂ and translation t̂ as outputs that depend on the

weight vector w as the input. In our current implementation, R̂ and t̂ are directly sent to the robust

registration module in Sec. 8.4 as an initial pose. However, we briefly demonstrate that they can

also be embedded in an end-to-end registration pipeline, as Weighted Procrustes is differentiable.

From a top-level loss function L of R̂ and t̂, we can pass the gradient through the closed-form solver,

and update parameters in downstream modules:

∂

∂w
L(R̂, t̂) =

∂L(R̂, t̂)

∂R̂

∂R̂

∂ŵ
+
∂L(R̂, t̂)

∂t̂

∂t̂(R̂, ŵ)

∂ŵ
, (8.10)



CHAPTER 8. GLOBAL REGISTRATION 127

where L(R̂, t̂) can be defined as the combination of differentiable rotation error (RE) and translation

error (TE) between predictions R̂, t̂ and groundtruth R∗, t∗:

Lrot(R̂) = arccos
Tr(R̂TR∗)− 1

2
, (8.11)

Ltrans(t̂) =||t̂− t∗||22, (8.12)

or the Forbenius norm of relative transformation matrices defined in [2, 33].

8.4 Robust Registration

In this section, we propose a registration fine-tuning step that minimizes a robust loss function of

choice to improve the registration accuracy. We use a gradient-based method similar to [21], but we

avoid finding the local correspondences. Instead, we rely on the correspondence confidence to define

the loss which removes the need for an expensive local geometric neighbor search. Also, we use a

continuous representation for rotations since gradient-based methods are sensitive to discontinuities.

8.4.1 SE(3) Representation and Initialization

We use the 6D-representation of 3D rotation proposed by Zhou et al. [45] rather than Euler angle or

quaternions which have discontinuities. The representation requires 6 parameters a1,a2 ∈ R3 which

can be converted into a 3× 3 orthogonal matrix by

f



| |

a1 a2

| |


 =


| | |

b1 b2 b3

| | |

 , (8.13)

where b1,b2,b3 ∈ R3 are b1 = N(a1), b2 = N(a2 − (b1 · a2)b1), and b3 = b1 × b2, and N(·)
denotes the normalization operation. Thus, the final representation that we use is a1,a2, t which

are equivalent to R, t using Eq. 8.13.

To initialize a1,a2, we simply use the first two columns of the rotation matrix R, i.e., b1, b2.

For convenience, we define f−1 as f−1(f(R)) = R though this inverse is not unique as there are

infinitely many choices of a1,a2 that map to the same R.

8.4.2 Energy Minimization

Traditional ICP [3] or FGR [43] minimize L2 distance, i.e., mean squared error, between registered

points. However, squared distance is sensitive to outliers as the function assumes Gaussian noise.

Instead, we use more robust loss functions to fine-tune the registration between predicted inlier
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correspondences. The general form of the energy function is

E(R, t) =

n∑
i=1

w̃iL(yIi , Rxi + t), (8.14)

where w̃i and Ii are defined as in Eq. 8.2. L(x,y) is a point-wise loss function between x and

y; we choose Huber loss in our implementation. The energy function is parameterized by R and

t which in turn are represented as a1,a2, t. We can use first-order optimization algorithms such

as SGD, ADAM, Adagrad, etc. to minimize the energy function, but higher-order optimizers are

also applicable since the number of parameters is small. Note though sharing a similar form, our

formulation is distinct from FGR since we incorporate predicted differentiable weights while FGR

depends on weights computed from point-wise loss. The complete algorithm of our pipeline is

described in Alg. 8.

Algorithm 8 Deep Global Registration

Require: X ∈ Rn×3, Y ∈ Rm×3

1: Fx ← Feature(X) // Sec. 8.3.1
2: Fy ← Feature(Y )
3: Ix→y ← NearestNeighbor(Fx,Fy) // Sec. 8.3.2
4: C ← {X;Y [Ix→y] }
5: w← InlierProbability(C)
6: R̂, t̂← arg minR,t e

2(R, t; w, X, Y ) // Sec. 8.3.3

7: a← f−1(R̂), t← t̂ // Sec. 8.4
8: while not converging do
9: `←

∑
c w̃cL(YIx→y [c], f(a)Xc + t), c ∈ C

10: a← Update(a, ∂∂a`(a, t))

11: t← Update(t, ∂∂t`(a, t))
12: end whilereturn f(a), t

8.5 Experiments

We train our network on the training split of the 3DMatch benchmark [40], which contains 3D point

cloud pairs from various real-world scenes with ground truth transformations computed by RGB-

D reconstruction pipelines [13, 8]. During training, we select pairs with at least 30% overlap and

augment data by applying random rotations varying from −180 to 180 degrees around a random

axis. Ground truth point-wise correspondences are found using the nearest neighbor search in 3D

space.

We empirically downsample input point clouds by voxelizing input with a 5cm voxel size, and

extract convolutional features [7] from the downsampled points for correspondence search. We train

the 6-dimensional convolutional network on a single Titan XP with batch size 4. SGD is used with
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an initial learning rate 10−1 and an exponential learning rate decay factor 0.99.

8.5.1 Pairwise Registration on 3DMatch

Figure 8.3: Global registration results of our method on all 8 different test scenes in 3DMatch [40].
Best viewed in color.

In this section, we test pairwise registration against baselines on the test set of the 3DMatch

benchmark [40] which contains 8 different scenes as depicted in Fig. 8.3. We measure translation

error (TE ) defined in Eq. 8.11, rotation error (RE ) defined in Eq. 8.12, and recall. Recall is the

ratio of successful pair-wise registrations where RE and TE are smaller than predefined thresholds.

Average TE and RE are computed only on these successfully registered pairs since failed registrations

return random poses as predictions. In Table 8.1, we measure recall with the RE threshold 15 degrees

and the TE threshold 30cm, which are practical thresholds for real-world global registrations. In

Fig. 8.4, we plot the sensitivity of the recall on each threshold by changing one threshold and setting

the other to infinity.

We compare our methods with various classical methods [43, 27, 38] and state-of-the-art learning
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Figure 8.4: Overall precision recall curves for pairwise registrations on the 3DMatch benchmark
with varying rotation and translation error thresholds. Our method achieves higher recall rate than
all the baselines.
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based methods [33, 2, 23]. All the experiments are evaluated on an Intel i7-7700 CPU and a GTX

1080Ti graphics card except for Go-ICP [38] tested on an Intel i7-5820K CPU. As an overview,

Fig. 8.4 reports the overall precision-recall curves of our method and the baselines on the benchmark,

while Fig. 8.5 includes detailed statistics on separate test scenes. Our system outperforms all the

baselines in terms of RE, TE, and recall.
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Figure 8.5: Analysis of registration results per scene. Row 1 : recall rate, the higher the better.
Row 2-3 : TE and RE measured on successfully registered pairs, the lower the better. Our method
is consistently better on all scenes unseen during training. Note: missing bars (e.g. PointNetLK)
indicates no successful registration exists.

Classical methods. To compare with classical methods, we evaluate Point-to-point ICP, Point-

to-plane ICP, RANSAC [27], and FGR [43], all implemented in Open3D [44]. In addition, we test

the open source python binding of Go-ICP [38] and Super4PCS [22]. For RANSAC and FGR, we

extract FPFH from voxelized point clouds. By default we set 4 million iterations and maximum 500

validations for RANSAC.

Since we perform global registration and assume unknown initial transformation, ICP variants

mostly fail, as shown in Table 8.1. As a global registration method, Go-ICP has a higher recall rate

than vanilla ICP, but the result is still less than 30% on average as it is sensitive to noise and small

overlaps. It is also less efficient due to its expensive branch-and-bound search and the single-thread

implementation. Super4PCS, as a sampling-based algorithm, performs similarly to Go-ICP. We

found its default setting samples 200 points per iteration, leading to inaccurate registrations due to
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Table 8.1: Row 1-5 : registration results of our method and classical global registration methods
on point clouds voxelized with 5cm voxel size. Our method outperforms RANSAC and FGR with
comparable speed to FGR. Row 6-9 : results of ICP variants, Row 10 and 11 : results of learning-
based methods. With relatively low recall rates, these methods generally fail on real-world scans.

Recall TE (cm) RE (deg) Time (s)
Ours 85.2% 7.73 2.58 0.70
FGR [43] 42.7% 10.6 4.08 0.31
RANSAC-2M [27] 66.1% 8.85 3.00 1.39
RANSAC-4M 70.7% 9.16 2.95 2.32
RANSAC-8M 74.9% 8.96 2.92 4.55
Go-ICP [37] 22.9% 14.7 5.38 771.0
Super4PCS [22] 21.6% 14.1 5.25 4.55
ICP (P2Point) [44] 6.04% 18.1 8.25 0.25
ICP (P2Plane) [44] 6.59% 15.2 6.61 0.27
DCP [33] 3.22% 21.4 8.42 0.07
PointNetLK [2] 1.61% 21.3 8.04 0.12

small overlaps in real-world scans. However, picking up more samples will drastically increase the

runtime. We observe that on average a 20% recall from a 4-second runtime is a relatively balanced

configuration.

Handcraft feature-based methods, FGR and RANSAC, perform better as shown in Table 8.1.

When aligning point clouds voxelized with 5cm voxels, RANSAC achieves recall as high as over 70%,

while FGR reaches 40%. Experimentally, in Table 8.1, increasing the number of RANSAC iterations

by a factor of 2 only improves performance marginally.

In Fig. 8.4 and Table 8.1, our method outperforms all the classical methods on all metrics. Also,

our method produces consistently lower TE and REs on all scenes. Note that our method only takes

around half the time of RANSAC (default 4M iterations) to run, while achieving higher recall and

registration accuracy.

Table 8.2: ATE (cm) error on the Augmented ICL-NUIM dataset with simulated depth noise. For
InfiniTAM, loop closure module is disabled since it fails in all scenes. For BAD-SLAM, loop closure
module only succeeds in Livingroom 2.

ElasticFusion [36] InfiniTAM [17] BAD-SLAM [31] Multi-way + FGR [43] Multi-way + RANSAC [44] Multi-way + Ours
Living room 1 66.61 46.07 fail 78.97 110.9 21.06
Living room 2 24.33 73.64 40.41 24.91 19.33 21.88
Office 1 13.04 113.8 18.53 14.96 14.42 15.76
Office 2 35.02 105.2 26.34 21.05 17.31 11.56
Avg. Rank 3 5 5 3.5 2.5 2

Learning-based methods. To compare with recent learning-based methods on the 3DMatch

benchmark [40], we train off-the-shelf learning-based methods on the same 3DMatch training setup

(Sec. 8.5) and evaluate them on the official test set. We use 3DRegNet [23], Deep Closest Point (DCP) [33],

PRNet [34], and PointNetLK [2] as our baselines. We train all the baselines on 3DMatch with the

same data augmentation as ours for fairness.
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First, we train 3DRegNet [23] on the 3DMatch, which uses a multi-layer perceptron for inlier

confidence prediction. We follow the setup outlined in [23], except that we do not manually filter

outliers using groundtruth poses which are in practice not available during test time. Instead, we

use raw FPFH correspondences for both training and testing phases, where the inlier ratio is around

10%. We find that while the inlier prediction accuracy can reach as high as 98% on the validation

set, the registration loss of 3DRegNet does not converge w/ or w/o any data augmentation. On the

test set, we find that the rotation errors and the translation errors are mostly above 30 degrees and

1m respectively.

We also train Deep Closest Point (DCP) [33] with embedded DGCNN [35] on 3DMatch. We

first use voxel downsampling to generate the same downsampled input as ours, and randomly pick

up 1024 points following [33]. Since DCP is expensive to train, we use two Titan X’s for these

experiments. We follow the same hyperparameters described in [33], and 1) train 250 epochs from

scratch; 2) finetune the pretrained weights for 150 epochs. Although the loss of DCP does converge

for all configurations, the best recall we get on the 3DMatch benchmark is 3.22%. We suspect that

the singly stochastic matrix used by DCP fails to capture the correspondences between point clouds

as the surjective mapping assumption is violated in real-world data.

DCP’s successor, PRNet [34], suffers from random runtime error in its open source version by

the time of the submission1. From our 30 epochs’ training before crashing, we observe that the loss

curve behaves stochasticly and the total recall is less than 1%. We assume it is either not suitable

for real-world scene scans or has fundamental implementation issues at the current stage. Due to

the absence of valid registrations, we do not include the numbers.

Lastly, we finetune PointNetLK [2] on 3DMatch for 400 epochs. We use a similar procedure as

DCP to generate input pairs with 1024 subsampled points. The loss does not converge, and the best

recall rate is 1.61%. PointNetLK uses a feature that is globally pooled for each input and regresses

the relative pose between objects. However, as inputs from 3DMatch contain multiple objects with

small overlaps, we suspect that the globally pooled features do not meet the required resolution for

registration and cannot correctly represent the input.

We report detailed results in Table 8.1, Fig. 8.4 and Fig. 8.5, where we demonstrate that these

end-to-end methods return low recall in all scenes, and produce higher TE and RE on successful

registrations. In conclusion, while working well on object-centric synthetic datasets, current end-to-

end registration approaches fail on real-world data, even cannot achieve comparable performance to

ICP. Unlike synthetic data, real 3D point cloud pairs contain multiple objects, partial observations,

more noise, and cannot guarantee perfect overlap. We assume it could be non-trivial to transfer

such networks to real-world registration tasks.

1“https://github.com/WangYueFt/prnet, commit ffceaf1.
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Real-world: Apartment Real-world: Boardroom

Synthetic: Office Real-world: Copyroom

Real-world: Loft Synthetic: Livingroom

Figure 8.6: Fragment registrations on [6, 24]. From left to right: FGR [43], RANSAC [27], Ours.
Row 1-3 : our method succeeds on scenes with small overlaps or ambiguous geometry structures while
other methods fail. Row 4-6 : by combining Weighted Procrustes and gradient-based refinement,
our method outputs more accurate registrations in one pass, leading to better aligned details.

8.5.2 Multi-way Registration

We implement multi-way registration for RGB-D scene reconstruction by modifying the state-of-the-

art offline reconstruction pipeline provided by Open3D [44], which is an implementation of [6, 24].

In general, Open3D’s pipeline first reconstructs fragments of scenes with a frontend containing

RGB-D odometry and TSDF integration modules. It then registers these fragments with a backend

where global registration is applied. After pairwise global registration, global pose per fragment is

optimized by multi-way registration introduced in [6], where robust pose graph optimization [19] is

performed. We reuse the frontend and replace the global registration module with our deep global

registration in the backend. All the parameters of our model are trained on the 3DMatch training

set and we do not finetune the weights on the test datasets.

We test the modified pipeline on the simulated Augmented ICL-NUIM dataset [6, 14] for quan-

titative trajectory results, and Indoor LiDAR RGB-D dataset [24] and Stanford RGB-D dataset [6]

for qualitative registration visualizations. Note these scenes are unseen during training.

We measure the absolute trajectory error (ATE) on the Augmented ICL-NUIM dataset with

simulated depth noise. As shown in Table 8.2, compared to state-of-the-art online SLAM meth-

ods [36, 17, 31] and offline reconstruction methods [43], our global registration module guarantees

consistent low ATE and is robust to noise.

For qualitative results, we compare pairwise fragment registration on these scenes against FGR

and RANSAC in Fig. 8.6. Full scene reconstruction results are in supplementary. Fig. 8.6 shows that
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our method can overcome issues caused by small overlaps and ambiguity in structures, thus it can

serve as a robust backend for large scale reconstruction. In addition, it shows that in cases when all

methods are able to converge to the correct registration at a coarse scale, our method can produce

more refined registration without performing additional ICP thanks to the robust pose estimation.

This enhances the accuracy of the global pose graph optimization [6] and results in more accurate

camera trajectories.

8.6 Conclusion

We propose Deep Global Registration, a learning based framework that aligns real-wolrd 3D scans

robustly and accurately. To achieve this, we propose a 6-D convolutional network for robust in-

lier detection, a differentiable Weighted Procrustes analysis for closed-form pose estimation, and

a gradient-based optimizer for pose refinement. Experiments show that our method outperforms

all the classical and learning-based registration methods, and can serve as a ready-to-use plugin to

replace RANSAC or FGR in off-the-shelf scene reconstruction pipelines.
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