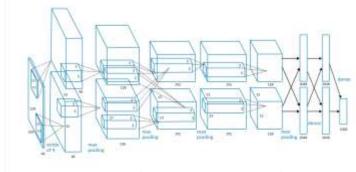
High Dimensional Convolutional Neural Networks for 3D perception

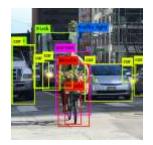
Chris Choy, Ph.D. candidate @ Stanford Vision and Learning Lab

1

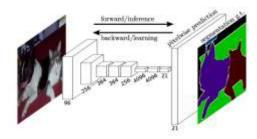
The Success of Convolutional Networks



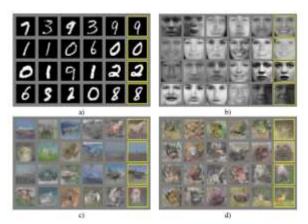
AlexNet [Krizhevsky et al.]



R-CNN [Girshick et al.]

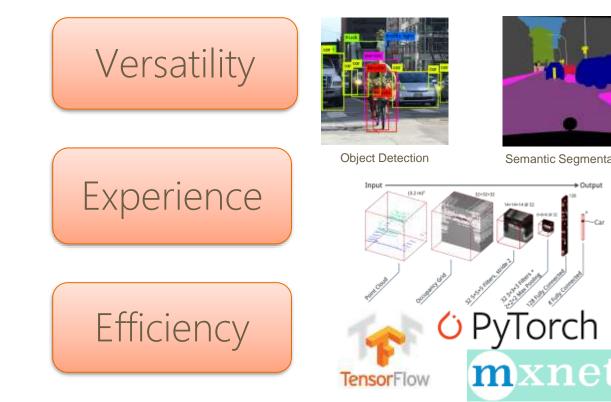


FCNN [Long et al.]



GAN [Goodfellow et al.]

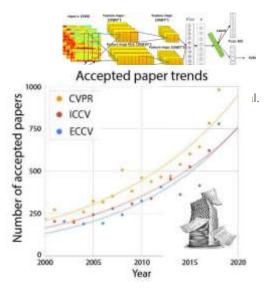
The Success of Convolutional Networks



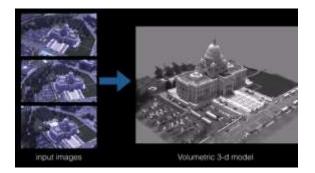
Semantic Segmentation

orch

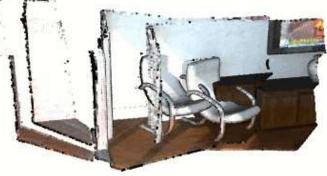
Output



Examples of 3D Vision Tasks



3D Reconstruction



3D Registration

3D Object Pose Estimation

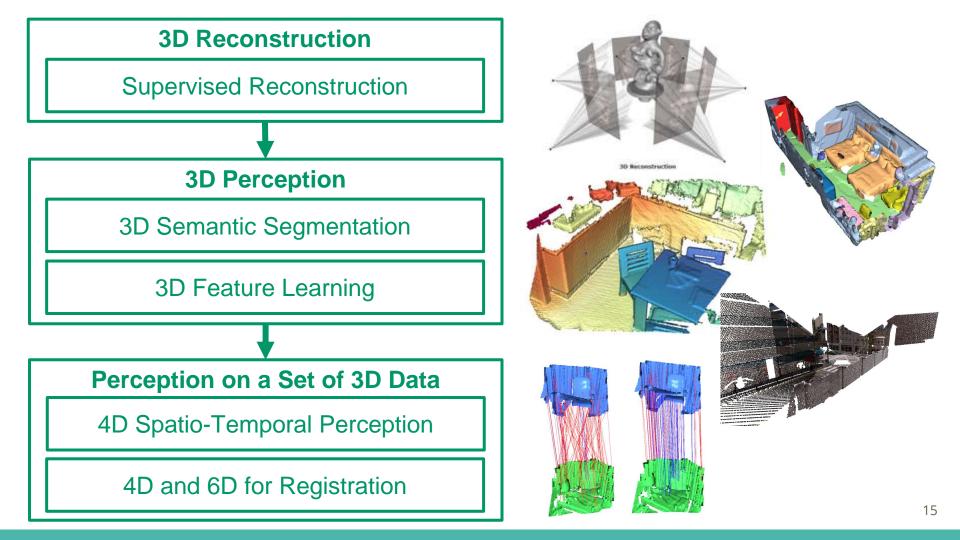
3D Object Tracking

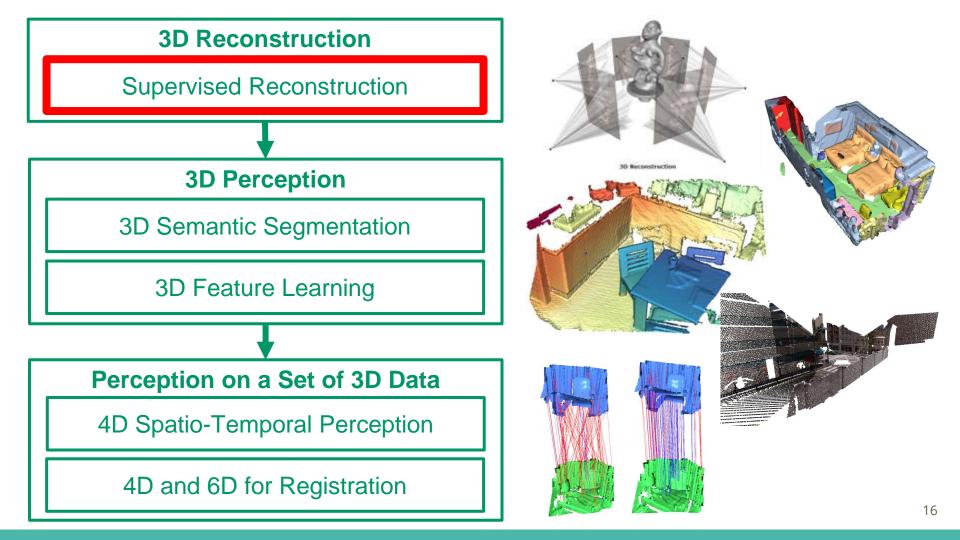
3D Vision in Action

Nvidia Research, 2019

Microsoft HoloLens

Amazon AR View





3D Reconstruction

- 3D-Recurrent Reconstruction Neural Networks, <u>Chris</u>, Danfei, JunYoung, Kevin, Silvio, ECCV'16
- Universal Correspondence Networks, <u>Chris</u>, JunYoung, Silvio, Manmohan, NIPS'16
- Weakly supervised 3D Reconstruction with Adversarial Constraint, JunYoung, <u>Chris</u>, Manmohan, Animehs, Silvio, 3DV'17
- DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image, Andrey, Jingwei, Animesh, Viraj, JunYoung, <u>Chris</u>, Silvio, WACV'18
- Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings, Kevin, <u>Chris</u>, Manolis, Angel, Thomas, Silvio, ACCV'18
- 4D-Spatio Temporal ConvNets: Minkowski Convolutional Neural Networks, <u>Chris</u>, JunYoung, Silvio, CVPR'19

3D Reconstruction from Few Images

- Single or Multi-view images of an object
- Online retail stor

Vonanda Sofa Bed, Folding Single Sleeper Ottoman Chair Modern **Upholstered Convertible Couch Guest** Bed with Pillow for Small Space, Da...

\$37299 vprime FREE Outivery Fri, Feb 14 Lifestyle Solutions Collection Grayson Micro-fabric SOFA, 80.3"x32"x32.68", Black

Amazon's Choice

\$26499

uprime FREE One-Day Get it Tomorrow, Feb 13

Classic Brands 4 5-Inch Cool Gel Memory Foam Replacement Mattress for Sleeper Sofa Bed , Twin, White

\$11999

prime FREE Crie-Day Gett it Tomorrow, Feb 13

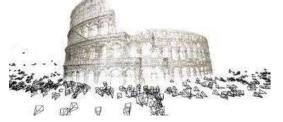
3D Reconstruction from Few Images

- Wide baseline
- Specular / texture-less region
- Single view

3D Reconstruction

Observations (Images)

Algorithms



[Longuet-Higgins, Haming et al., Snavely et al., ...]

[Eigen et al., Saxena et al., ...]

3D Representation

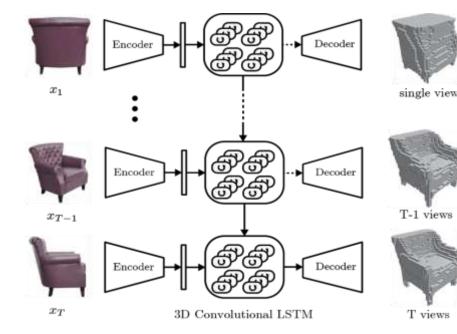
MVS

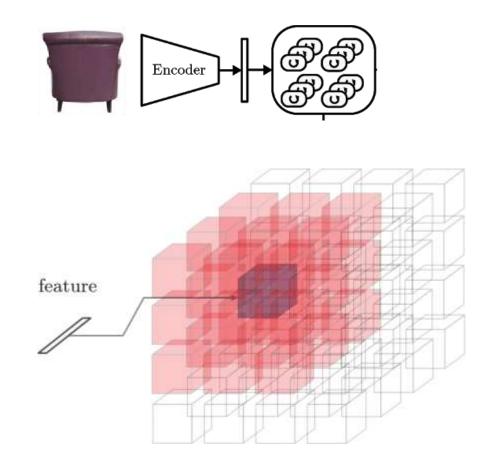
Tomography

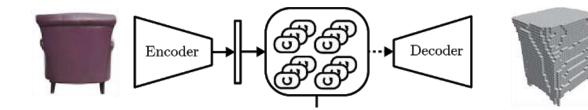
Object-centric Reconstruction

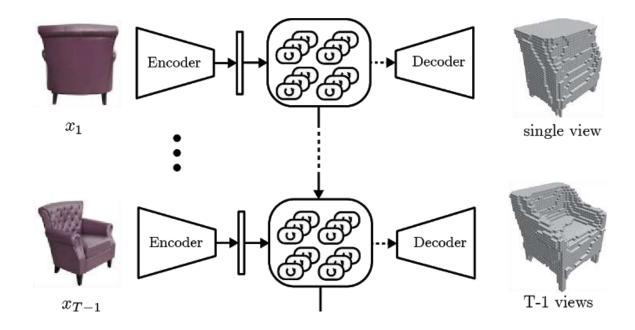
3D Recurrent Reconstruction Neural Networks

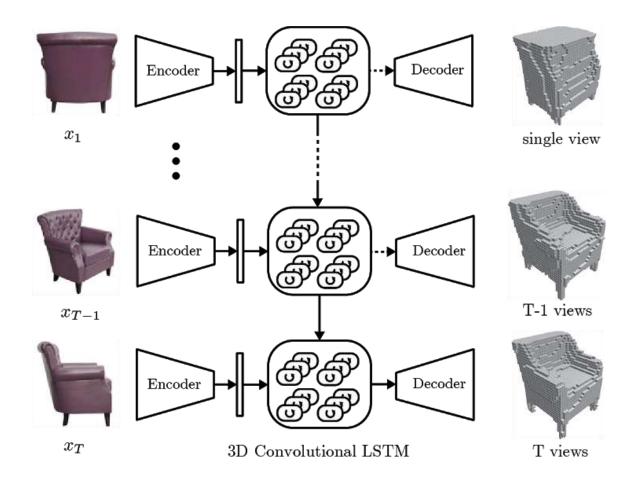
- End-to-end 3D reconstruction
- Unified framework
 - Single-view & Multi-view reconst.
- 3D-Convolutional LSTM
 - Update hidden states











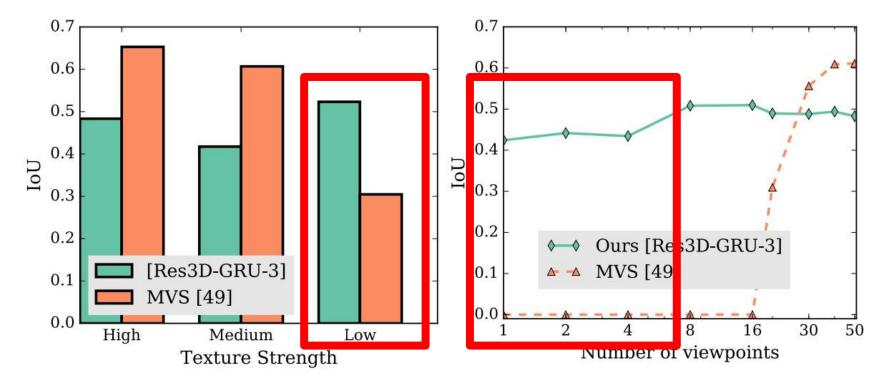
Update / maintain prediction

Increasing confidence on armrests

Number of images

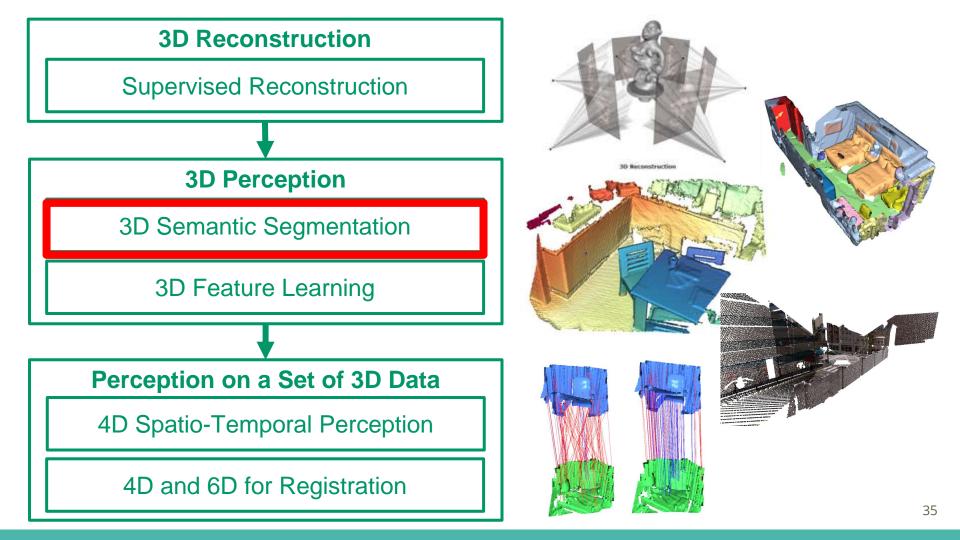
Chris, Danfei, JunYoung, Kevin, Silvio, **3D-Recurrent Reconstruction Neural Networks**, ECCV'16 30

Robustness to texture and # views



Chris, Danfei, JunYoung, Kevin, Silvio, **3D-Recurrent Reconstruction Neural Networks**, ECCV'16

33



3D Perception

- SegCloud: Semantic Segmentation of 3D Point Clouds, Lyne, <u>Chris</u>, Iro, JunYoung Silvio, 3DV'17
- 4D-Spatio Temporal ConvNets: Minkowski Convolutional Neural Networks, <u>Chris</u>, JunYoung, Silvio, CVPR'19
- Fully Convolutional Geometric Features, <u>Chris</u>, Jaesik, Vladlen, ICCV'19

Sparsity of	3D da	ta		
O(N ³) volume	VS.	O(N ²) surface		
				37

20cm voxel : 18%

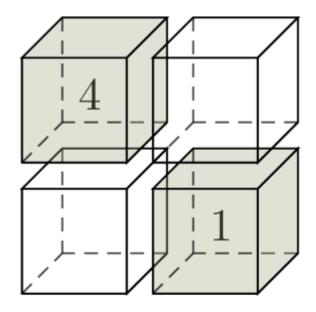
Sparse Representations and Convolution

Continuous Representation		Graph Representation	Discrete Representation
Points and PointNet [Qi et al.]	Occupancy Net [Mescheder et al.]	Graph Net [Kipf & Wellings]	OctNet and Octree [Riegler et al.]
	Deep SDF [Park et al.]	Conv on Graph [Defferrard et al.]	
	Deep Level Sets [Michalkiewicz et al.]		
Continuous Convolution PointCNN Monte Carlo Conv Surface / Tangent Conv 		Hybrid Representation	Sparse Tensor [Graham et al., Choy et al.]
		Contiuous + Graph	43

Sparse Matrix

- Majority of elements are 0
- Efficient representation
 - Non-zero elements only
 - Compressed sparse row (CSR)
 - List of lists
 - COOrdinate list
 - Etc.
- Example: 2x2 matrix
 - COOrdinate (COO) representation
 - 4 at (0, 0)
 - 1 at (1, 1)

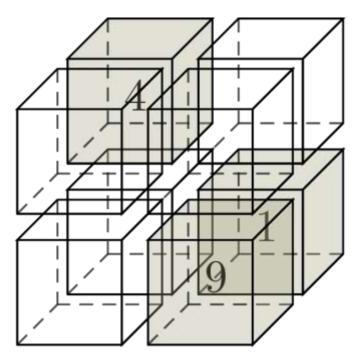
(0, 0)



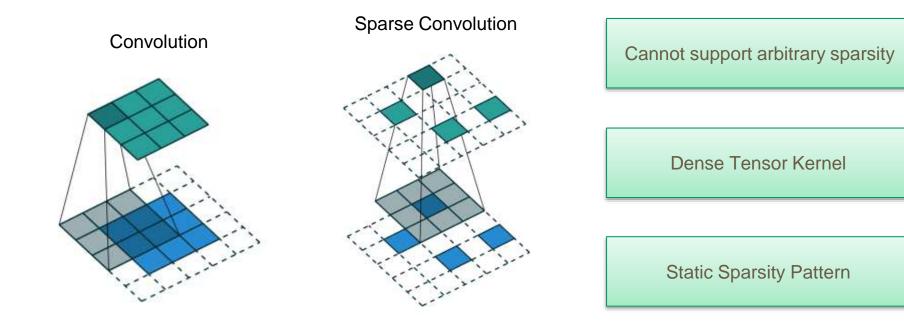
Sparse Tensor

- High-dimensional extension
- COOrdinate representation
 - 4 at (0, 0, 0)
 - 1 at (1, 1, 0)
 - 9 at (1, 1, 1)

(0, 0, 0)

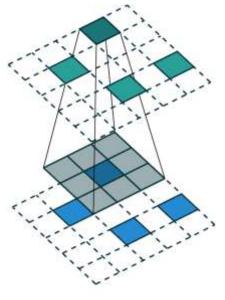


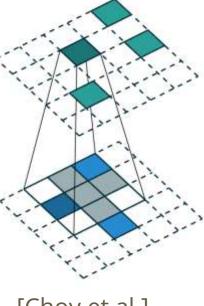
Convolution on a Sparse Tensor



[Graham et al., Submanifold Sparse ConvNet, 2017] [Graham and Maaten, 3D Sparse ConvNet, 2018]

Generalized Convolution





Can support arbitrary sparsity

Sparse Tensor Kernel

Dynamic Sparsity Pattern

[Graham et al.]

[Choy et al.]

Generalized Convolution

Can support arbitrary sparsity

Sparsity pattern manipulation Ex) C = A + B Ex) Pruning

Sparse Tensor Kernel

High-dimensional ConvNet Volume of dense convolution kernel: O(N^D)

Sparse convolution kernel: O(D)

Dynamic Sparsity Pattern

Generative Tasks

Generalized Convolution: Special Cases

Sparse Tensor Kernel

- Dilated Convolution
- Separable Convolution
- Sparse Convolution

Dynamic Sparsity Pattern

Octree Generative Networks

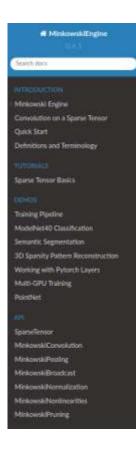
Arbitrary sparsity

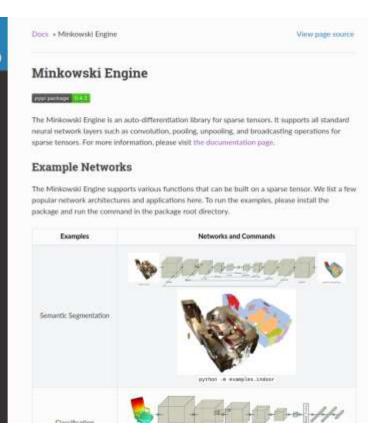
Dense Convolution

Minkowski Engine

A convolutional neural network library for sparse tensors

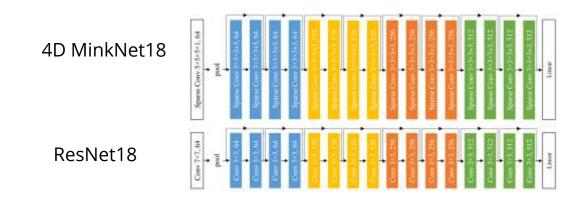
- Convolution
- [Max/Avg/Global] Pool
- Broadcast
- [Batch/Instance] Normalization
- Tensor arithmetic
- Pruning
- • • •





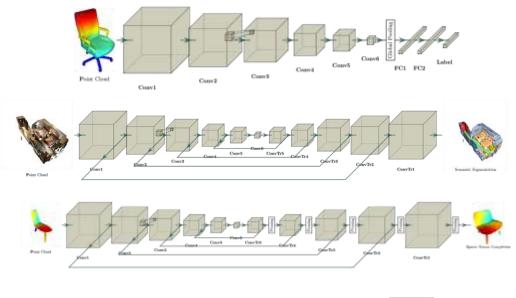
Minkowski Network

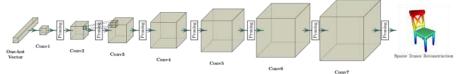
- Very deep convolutional neural networks possible in 3D
 - 42-layer deep neural networks for semantic segmentation
 - 101 layers for classification
- Reuse network architectures from years of research in 2D



Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

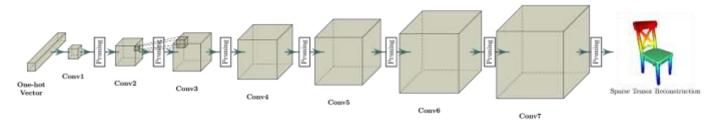
Minkowski Engine for other applications





Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

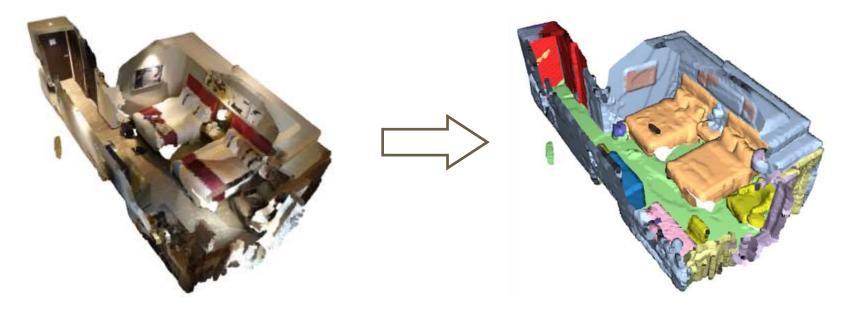
Sparsity Pattern Reconstruction



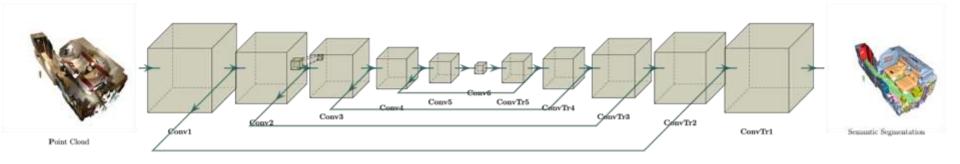
.1

3D Perception: Semantic Segmentation

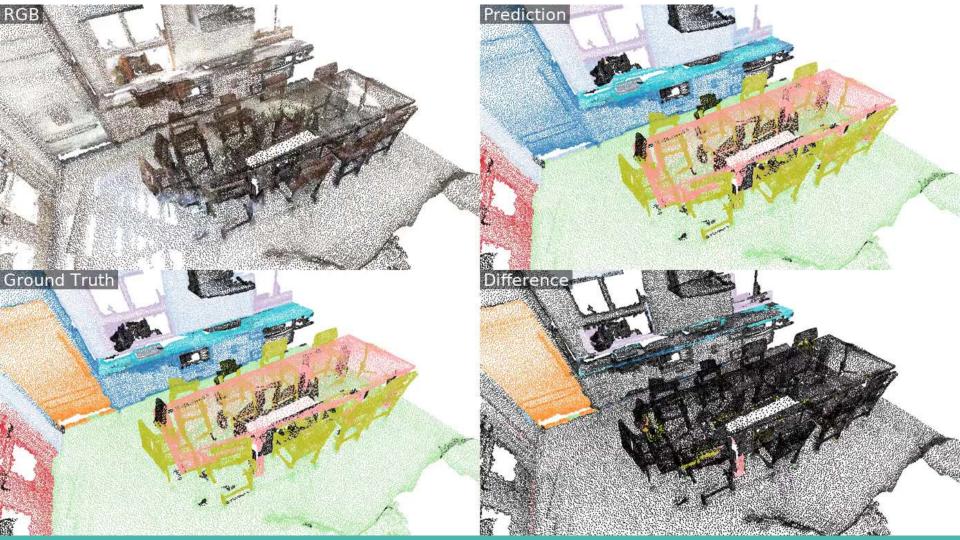
- Partition 3D scans or data into semantic parts
- Label each voxel or 3D point as one of semantic labels



3D Semantic Segmentation on Sparse Tensors

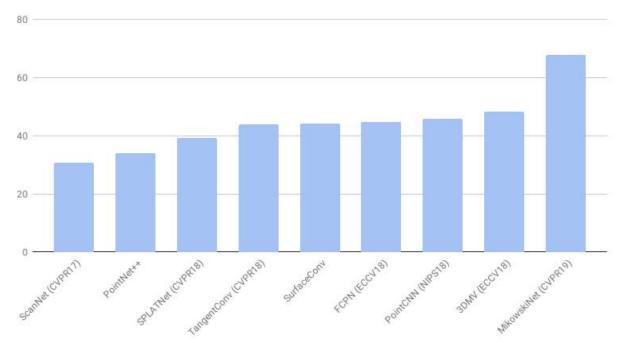


- Sparse tensors for all input/output feature maps
- U-shaped network
 - Hierarchical map
 - Increases receptive field size exponentially



Results: ScanNet

ScanNet 3D Semantic Segmentation mIoU (Nov/2018)



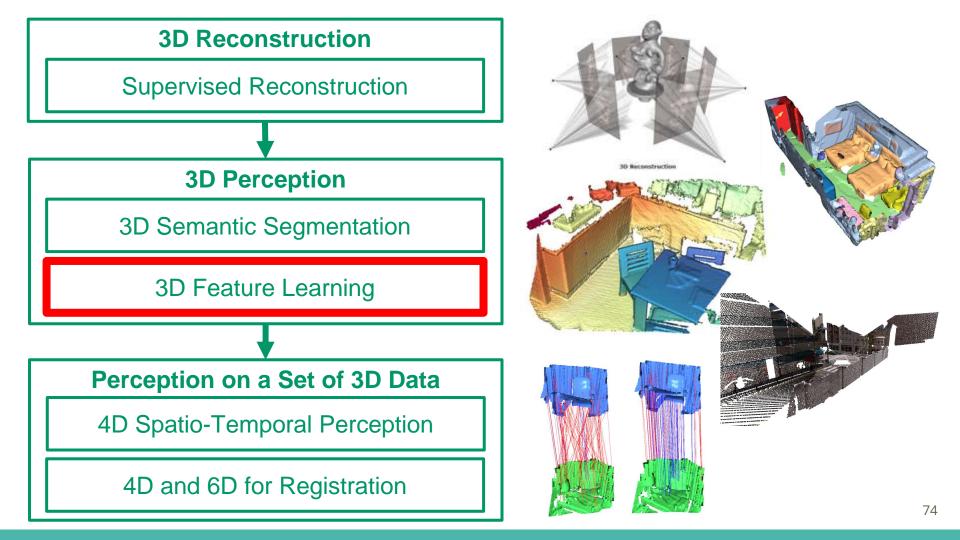
Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

Results: Stanford 3D

Method	mIOU	mAcc
PointNet [22]	41.09	48.98
SparseUNet [9]	41.72	64.62
SegCloud [30]	48.92	57.35
TangentConv [29]	52.8	60.7
3D RNN [32]	53.4	71.3
PointCNN [15]	57.26	63.86
SuperpointGraph [14]	58.04	66.5
MinkowskiNet20	62.60	69.62
MinkowskiNet32	65.35	71.71

Per class IoU in the supplementary material.

Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

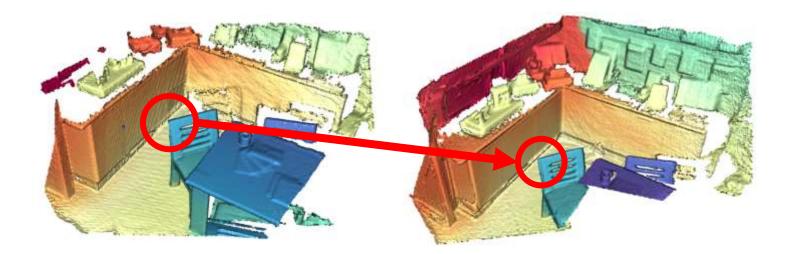


3D Feature Learning

- Universal Correspondence Network, <u>Chris</u>, JunYoung, Silvio, Manmohan, NIPS'16
- Fully Convolutional Geometric Features, <u>Chris</u>, Jaesik, Vladlen, ICCV'19

3D Geometric Feature

- A vector representation of the local / global 3D geometry
 - Correspondence, registration, tracking, scene flow, ...



Prior works in 3D Geometric Features

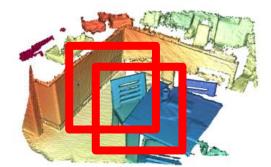
Hand-designed Features

Spin Image, USC, SHOT, PFH, FPFH

Learned Features

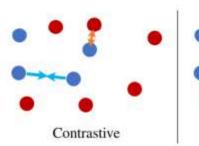
3DMatch, CGF, PointNet, PPF, FoldNet, PPFFold, CapsuleNet, DirectReg, SmoothNet

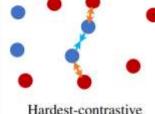
- Extract a small 3D patch
 - Limits context, receptive field
 - Features extracted separately
- Preprocessing
 - Normal, Signed Distance Function, curvatures

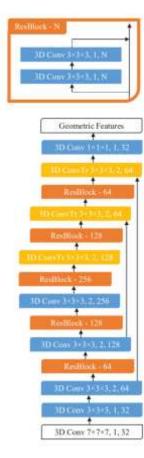


Fully Convolutional Metric Learning

- No preprocessing, no patch extraction
 - no receptive field limit by crop size
 - Efficient reuse of shared computation
- Hardest Negative Mining



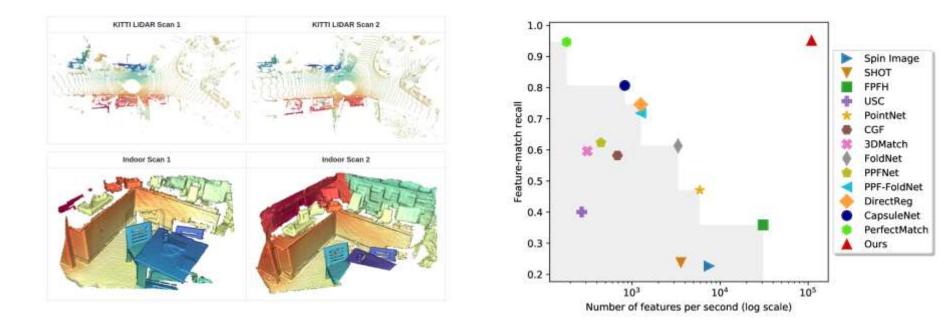




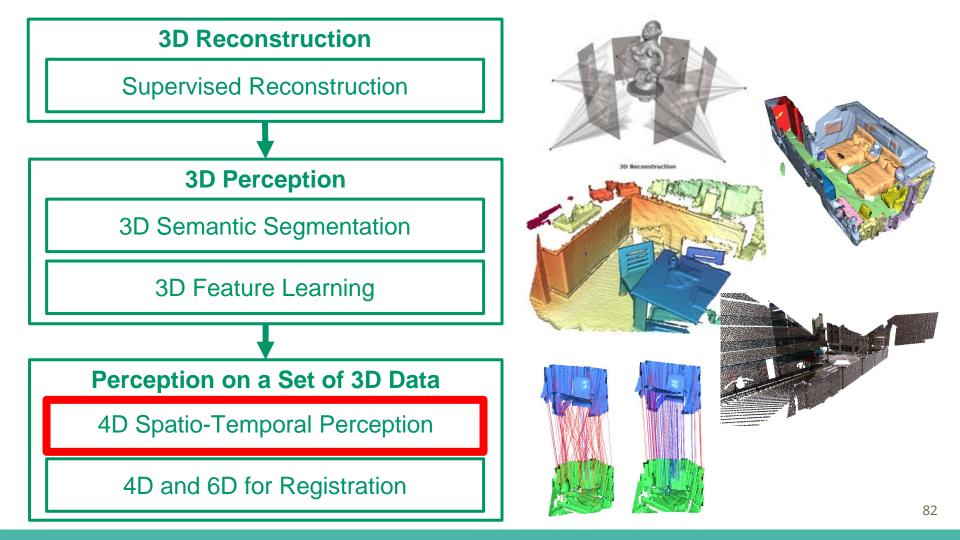
Choy et al., **Universal Correspondence Network**, NIPS'16 Choy et al., **Fully Convolutional Geometric Features**, ICCV'19

Triplet

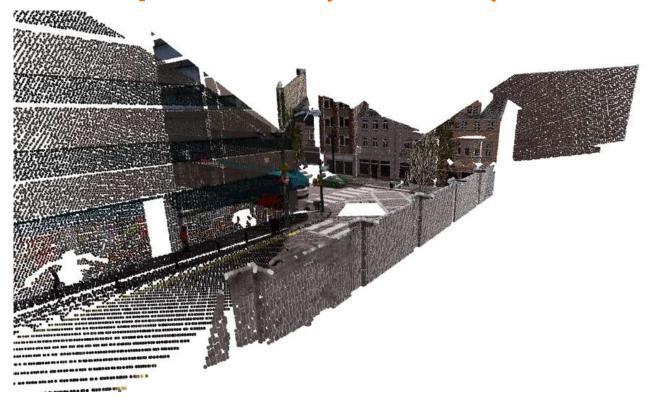
Fully Convolutional Geometric Features



Choy et al., Fully Convolutional Geometric Features, ICCV'19



4D Spatio-temporal data (3D Video)



3D to 4D Spatio-temporal perception

Advantages of 4D data

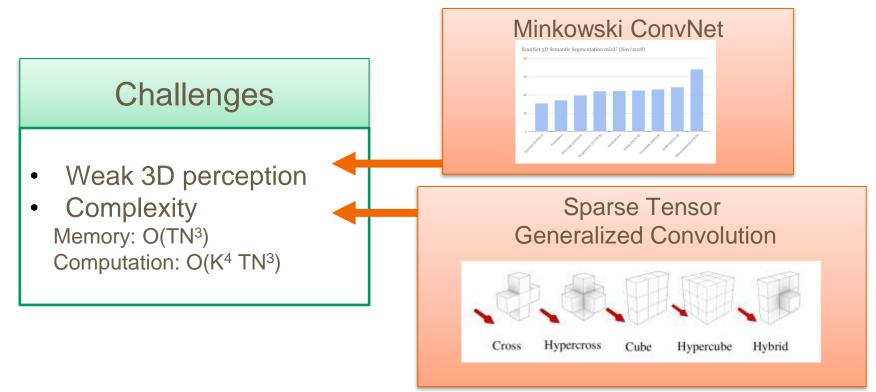
- Temporal consistency
- Novel viewpoint
- Dynamics / Action

Challenges of 4D data

- Weak 3D perception
- Complexity Memory: O(TN³) Computation: O(K⁴ TN³)

- 4D Markov Random Fields for Medical Imaging [McInerney & Terzopoulos, 1995]
- 4D Cardiac Image Segmentation [Lorenzo-Valdés et al., 2014]

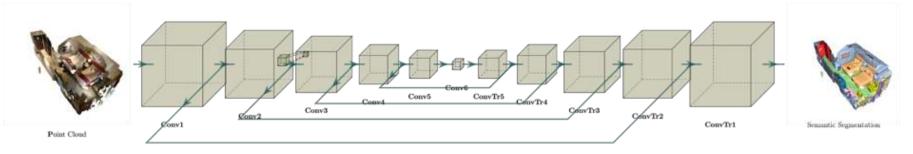
High Dimensional Spaces and Generalized Convolution



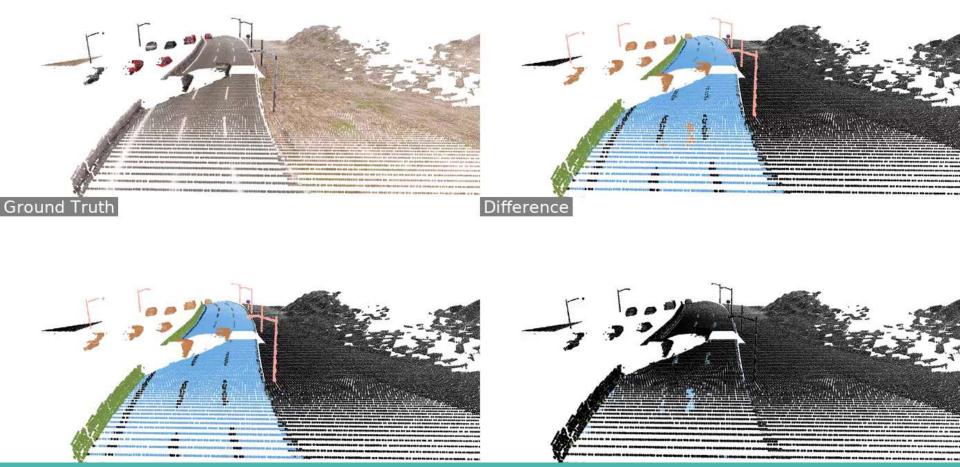
Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

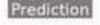
4D Spatio-Temporal Semantic Segmentation

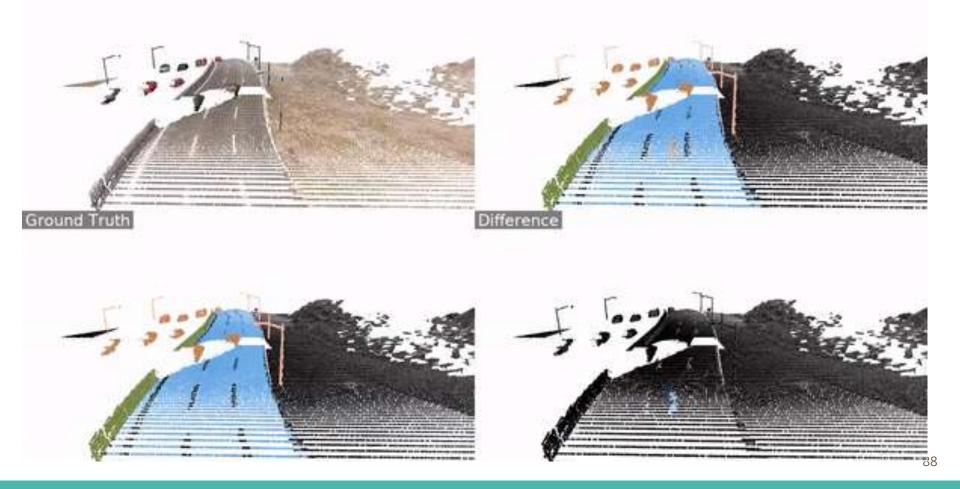
- Spatially aligned 3D video
 - Static objects have the same 3D coordinates
 - GPS, SLAM
- Synthetic dataset: Synthia
- Network:
 - U-shaped Net for semantic segmentation, in 4D



Prediction



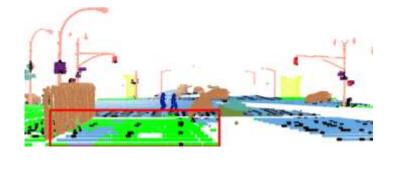


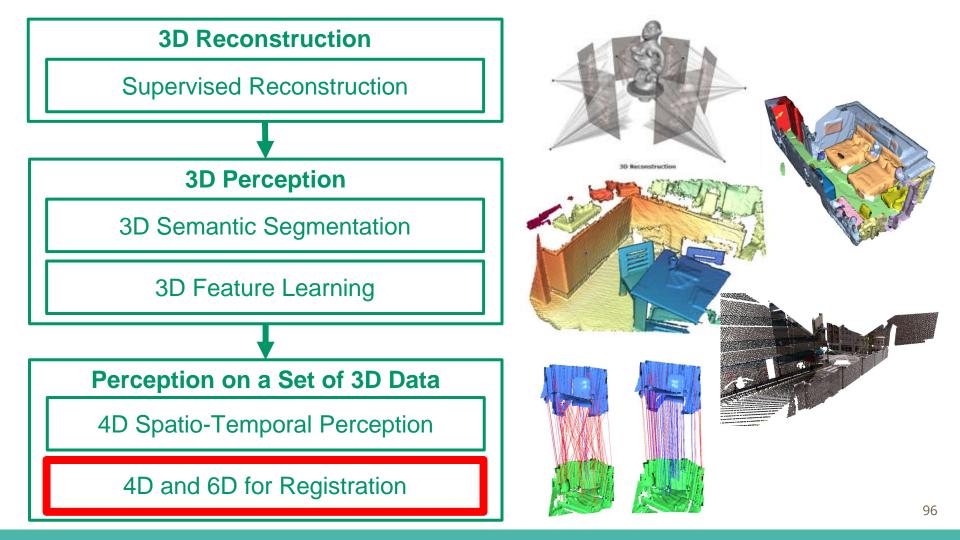


Results: 4D Synthia Dataset

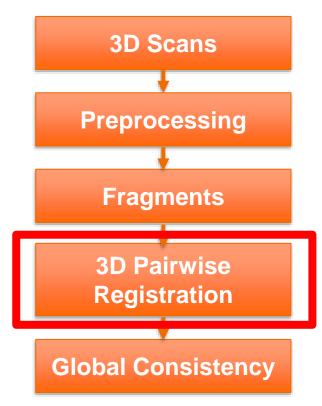
IoU	Building	Road	Sidewalk	Fence	Vegetation	Pole	Car	Traffic Sign	Pedestrian	Lanemarking	Traffic Light	mIoU		
3D MinkNet42	87.954	97.511	78.346	84.307	96.225	94.785	87.370	42.705	66.666	52.665	55.353	76.717		
4D Tesseract MinkNet42 4D MinkNet42	89.957 88.890	96.917 97.720	81.755 85.206	82.841 84.855	96.556 97.325	96.042 96.147	91.196 92.209	52.149 61.794	51.824 61.647	70.388 55.673	57.960 56.735	78.871 79.836		
M.A	M		4D cor											
					More effective for small objects						Faster & Better Regularized			

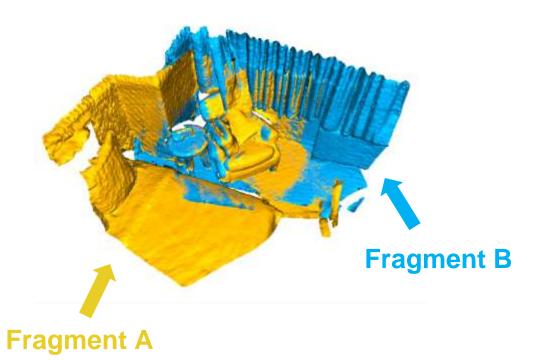
4D ConvNet



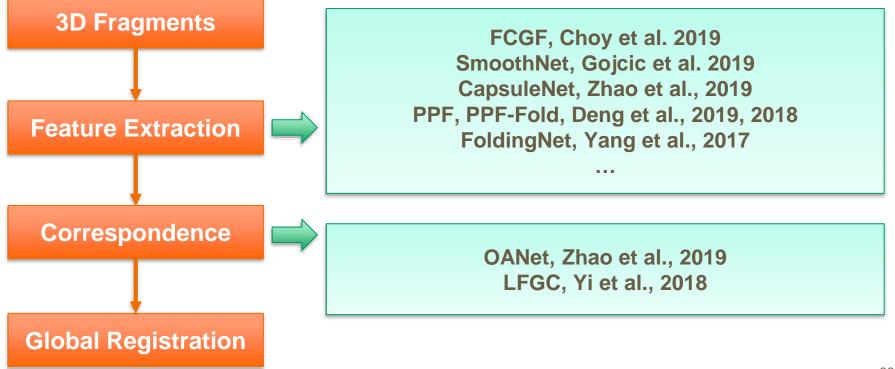


3D Reconstruction

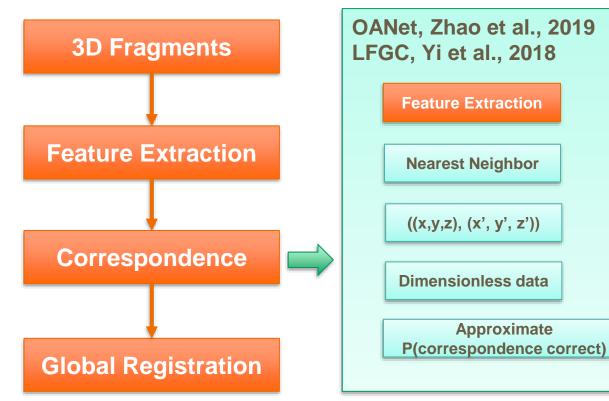


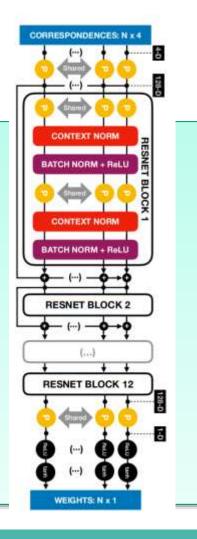


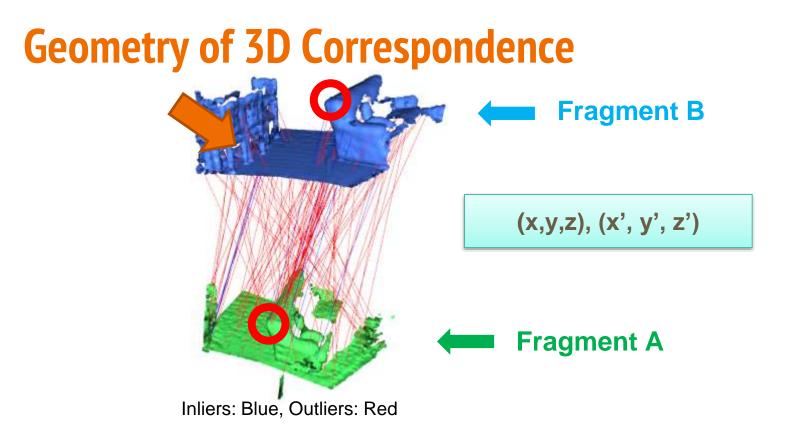
3D Pairwise Registration



3D Pairwise Registration







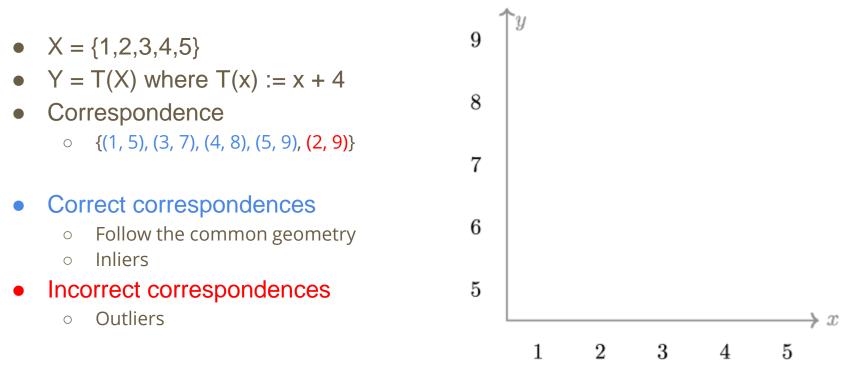
3D Correspondences and 6D Surface

(x,y,z), (x', y', z')

- (x, y, z, x', y', z')
- First 3 follow A, last 3 follow B
- Inliers follow the common geometry

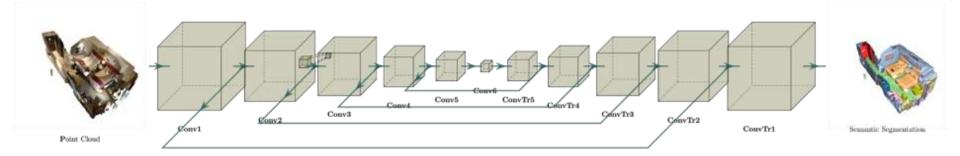
6D Hyper Surface

Correspondences form high-dimensional geometry

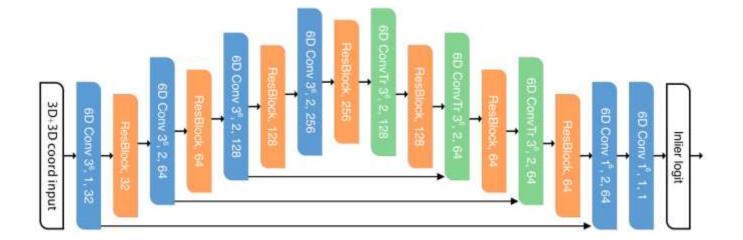


Inlier vs. Outlier

Label each correspondence as Inlier vs. Outlier \rightarrow Label each 6D point as an Inlier vs. Outlier \rightarrow Label each 3D point as chair, bed, ...



6D Convolutional Neural Network



Translation invariance: Fragments can be located anywhere in 3D space Multi-resolution (large receptive field, less sparse)

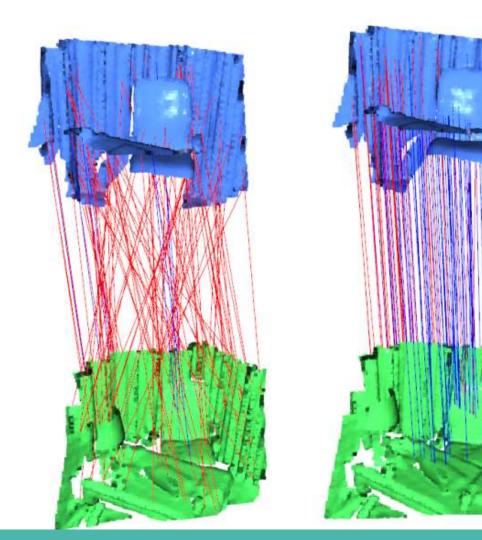
Results: 3D Correspondence Segmentation

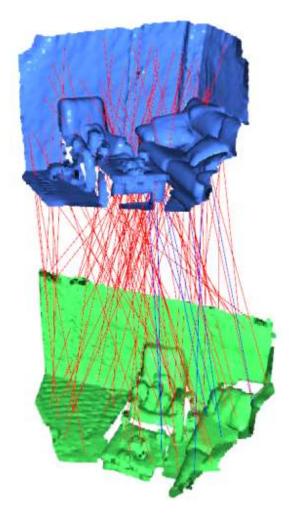
		FPFH + FGR FPF			FH + O	urs + FGR	FPFH + RANSAC			FPFH + Ours + RANSAC				
		SNR	TE	RE	Succ. Rate	TE	RE	Succ. Rate	TE	RE	Succ. Rate	TE	RE	Succ. Rate
	Kitchen	1.62%	10.98	4.99	37.15	5.68	2.21	65.61	6.25	2.17	44.47	5.90	1.98	69.57
3D Fragments	Home 1	2.71%	11.12	4.40	45.51	6.52	2.08	80.77	7.07	2.19	61.54	6.00	1.87	80.13
ob i raginento	Home 2	2.83%	9.61	3.83	36.54	7.13	2.56	64.42	6.47	2.40	50.00	7.86	2.56	69.71
	Hotel 1	1.35%	12.31	5.09	33.19	7.95	2.65	76.11	7.48	2.75	48.67	7.38	2.38	80.09
1	Hotel 2	1.54%	12.27	5.22	25.00	7.86	2.56	69.23	9.54	3.18	47.12	6.40	2.25	70.19
	Hotel 3	1.59%	13.52	7.04	27.78	5.39	1.99	72.22	5.91	2.46	59.26	5.85	2.36	81.48
Feature Extraction	Study	0.87%	16.10	6.01	16.78	9.61	2.64	53.42	10.05	3.01	30.48	8.51	2.23	56.16
r catare Extraction	Lab	1.59%	10.48	4.80	42.86	7.69	2.44	61.04	8.01	2.31	45.45	6.64	2.12	68.83
	Average	2	12.05	5.17	33.10	7.23	2.39	67.85	7.60	2.56	48.37	6.82	2.22	72.02
Correspondence														
	-	6D Co	onvNe	t Con	fidence F	ilter								
Global Registration														

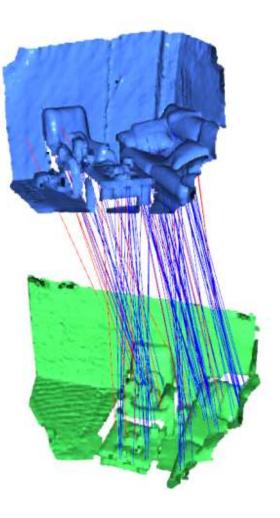
Results: 3D Correspondence Segmentation

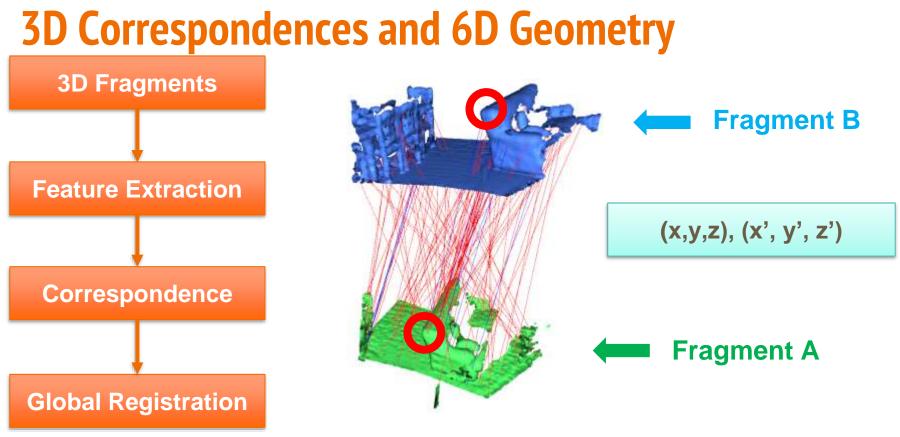
			FPFH +	- FGR	FPFH	+ Yi et a	al. [2] + FGR	FPFH	+ Yi et al	[2] + RANSAC	FPFH + Ours + RA		
	SNR	TE	RE	Succ. Rate	TE	RE	Succ. Rate	TE	RE	Succ. Rate	TE	RE	Succ. Rate
Kitchen	4.90%	9.32	3.92	44.86	8.06	3.36	55.53	9.10	3.65	57.71	5.90	1.98	69.57
Home 1	7.50%	9.13	3.53	51.92	8.76	3.23	64.10	9.28	2.99	67.31	6.00	1.87	80.13
Home 2	6.65%	9.02	3.58	36.54	7.96	3.13	45.19	10.02	3.71	53.85	7.86	2.56	69.71
Hotel 1	5.22%	10.20	3.86	46.02	9.14	3.46	57.52	11.25	3.80	61.95	7.38	2.38	80.09
Hotel 2	4.75%	10.69	4.82	35.58	9.74	3.82	50.00	11.06	4.52	56.73	6.40	2.25	70.19
Hotel 3	5.20%	13.10	4.69	46.30	10.36	3.86	57.41	10.59	4.05	68.52	5.85	2.36	81.48
Study	3.83%	14.20	4.74	27.40	12.95	4.01	37.67	12.88	4.09	48.63	8.51	2.23	56.16
Lab	4.98%	9.33	3.60	46.75	7.51	3.26	49.35	8.85	2.94	50.65	6.64	2.12	68.83
Average		10.62	4.09	41.92	9.31	3.52	52.10	10.38	3.72	58.17	6.82	2.22	72.02

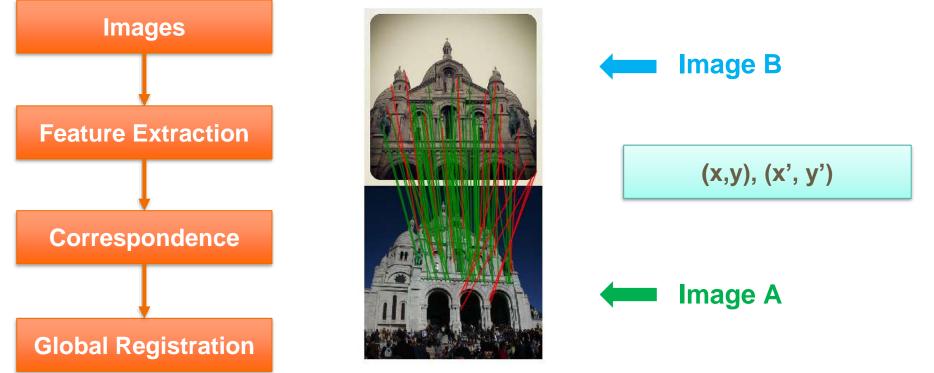
Yi et al., Learning to find good correspondences, 2018 Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, 2020 107



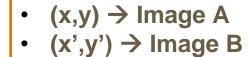


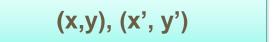


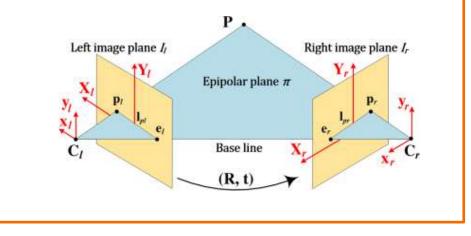




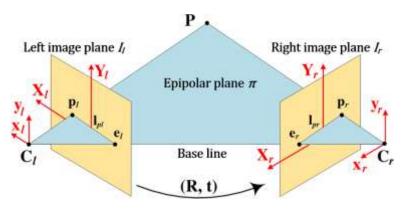
Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, 2020







Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, 2020



$$\mathbf{E} = \mathbf{R} \, [\mathbf{t}]_{ imes}$$

$$\mathbf{x}^T \mathbf{E} \mathbf{x}' = 0$$

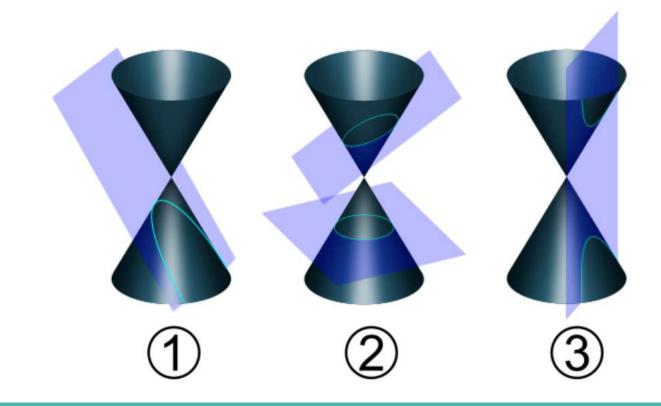
Second degree polynomial (x, y, x', y') = 0

Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, 2020

Conic Sections

conic section	equation	eccentricity (e)	linear eccentricity (C)	semi-latus rectum (ℓ)	focal parameter (p)		
circle	$x^2 + y^2 = a^2$	0	0	a			
ellipse	$\displaystyle rac{x^2}{a^2}+rac{y^2}{b^2}=1$	$\sqrt{1-\frac{b^2}{a^2}}$	$\sqrt{a^2-b^2}$	$\frac{b^2}{a}$	$rac{b^2}{\sqrt{a^2-b^2}}$		
parabola	$y^2 = 4ax$	1	N/A	2a	2a		
hyperbola	$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$	$\sqrt{1+rac{b^2}{a^2}}$	$\sqrt{a^2+b^2}$	$\frac{b^2}{a}$	$\frac{b^2}{\sqrt{a^2+b^2}}$		

4D Hyper Conic Section of 5D Hyper Cones



(x,y), (x', y')

- (x,y) → Image A
 (x',y') → Image B

$$\mathbf{x}^T \mathbf{E} \mathbf{x}' = 0$$

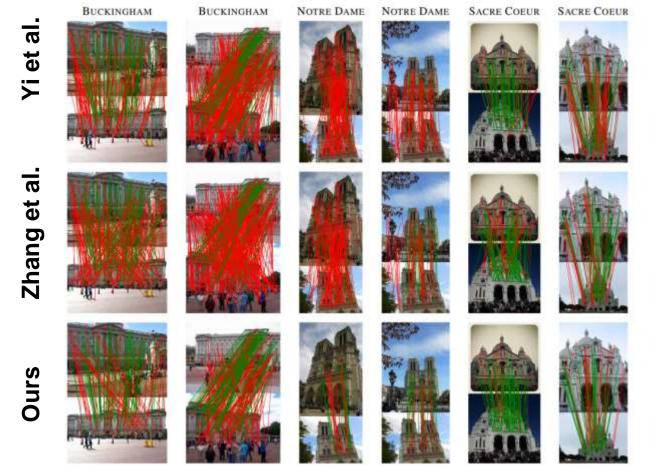
2-nd degree polynomial = 0

4D hyper conic section

YFCC 100M dataset

0	LMeDs [34]		MLESAC [40]		Yi et al. [44]		Zhang et al. [47]			Ours					
S	Prec.	Recall	F1	Prec.	Recall	F1	Prec.	Recall	F1	Prec.	Recall	F1	Prec.	Recall	Fl
BUCKINGHAM	0.213	0.178	0.194	0.294	0.299	0.297	0.490	0.767	0.598	0.535	0.804	0.642	0.589	0.830	0.689
NOTRE DAME	0.335	0.197	0.248	0.489	0.422	0.453	0.568	0.890	0.693	0.679	0.901	0.774	0.701	0.922	0.796
REICHTAG	0.380	0.217	0.276	0.573	0.441	0.498	0.736	0.876	0.800	0.808	0.878	0.842	0.772	0.903	0.832
SACRE COEUR	0.203	0.104	0.137	0.418	0.292	0.344	0.653	0.865	0.744	0.724	0.902	0.803	0.726	0.921	0.812
Average	0.283	0.174	0.214	0.444	0.364	0.398	0.612	0.849	0.709	0.686	0.871	0.765	0.697	0.894	0.782

Yi et al., Learning to find good correspondences, 2018 Zhang et al., Learning Two-View Correspondences and Geometry Using Order-Aware Network, 2019 Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, 2020



Yi et al., Learning to find good correspondences, 2018 Zhang et al., Learning Two-View Correspondences and Geometry Using Order-Aware Network, 2019 Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, 2020

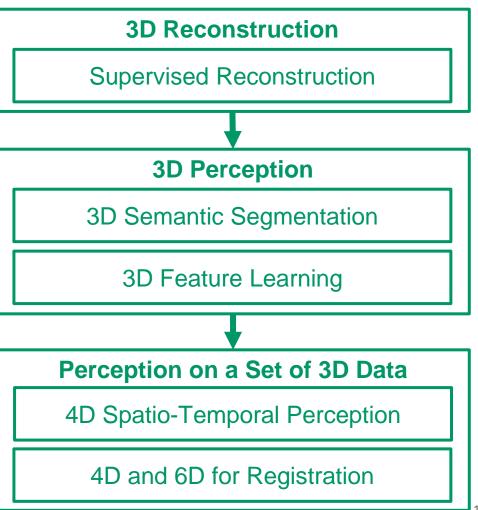
Conclusions

3D Convolutional Networks 4D Convolutional Networks

4D Convolutional Networks 6D Convolutional Networks

7D Convolutional Networks

32D Convolutional Networks



Conclusions and Future Work

- Many more high-dimensional problems
 - Geometric structure
- Expand the high-dimensional pattern recognition problems to
 - 3D object detection
 - Tracking
 - Reconstruction

Thank you

Thank you

Vladlen Koltun

Jaesik Park

Manmohan Chandraker

JunYoung Gwak

Iro Armeni

Lyne Tchapmi

Kevin Chen

Kuan Fang

Benjamin Van Roy

Leonidas Guibas

Gordon Wetzstein

Tsachy Weissman

Thank you

Danfei Xu, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Manolis Savva, Angel Chang, Namhoon Lee, Yu Xiang, Junha Lee, Michael Stark

Thank you for your attention